

2023 Annual Monitoring Report

Croft Waste Disposal Site Magnetawan, Ontario

Prepared for:

Municipality of Magnetawan

4304 Highway 520 Magnetawan, Ontario P0A 1P0

February 29, 2024

Pinchin File: 225335.007

Issued to: Contact: Issued on: Pinchin file: Issuing Office: Primary Pinchin Contact: Municipality of Magnetawan Clerk-Administrator February 29, 2024 225335.007 Sudbury, ON Tim McBride, B.Sc., P.Geo., QP_{ESA}

Author:

Aezlyn Nisbet Project Technologist 705.521.0560 anisbet@pinchin.com

Reviewer:

Tim McBride, B.Sc., P. Geo., QP_{ESA} Practice Specialist – Hydrogeology Director, Landfill & Municipal Services Director, Northern Ontario 705.521.0560 tmcbride@pinchin.com

TABLE OF CONTENTS

1.0 INTRODUCTION			1
	1.1	Location 1.1.1 Site Survey and Aerial Photography	
	1.2	Ownership and Key Personnel	2
	1.3	Description and Development of the Site	
	1.4	1.3.1 Site Document Review Monitoring and Reporting Program Objectives and Requirements	
	1.4	Assumptions and Limitations	
2.0	PHYS	SICAL SETTING	5
	2.1	Geology and Hydrogeology	
	2.2	Surface Water Features	
	2.3	Historical Data	
		2.3.1 Historical Groundwater Data2.3.2 Historical Surface Water Data	
3.0	METH	IODOLOGY	
	3.1	Scope of Work	7
	3.2	Groundwater Monitoring Well Locations	
	3.3	Surface Water Monitoring Locations	
	3.4	Monitoring Frequency	
	3.5	Monitoring Parameters 3.5.1 Groundwater Monitoring Parameters	
		3.5.2 Surface Water Monitoring Parameters	
	3.6	Monitoring Procedures and Methods	
		3.6.1 Standard Operating Procedures	
		3.6.2 Groundwater Monitoring Activities	
		3.6.3 Surface Water Monitoring Activities	13
		3.6.4 Groundwater and Surface Water Field Measurements	
	3.7	3.6.5 Record Keeping and Field Notes Quality Assurance for Sampling and Analysis	
	3.8	Data Quality Evaluation	
4.0		SSMENT, INTERPRETATION AND DISCUSSION	
		Groundwater Flow Interpretation	
	4.1 4.2	Groundwater Flow Interpretation	
	7.2	4.2.1 The Reasonable Use Criteria Assessment (RUC)	
		4.2.2 The Ontario Drinking Water Quality Standards (ODWQS)	
	4.3	Groundwater Results	
		4.3.1 Background Water Quality Evaluation	
		4.3.2 Leachate Source Quality Evaluation	
		4.3.3 Immediately Downgradient Water Quality Evaluation	
	4.4	4.3.4 Downgradient Water Quality Evaluation	
	4.4 4.5	Groundwater Trend Analysis Groundwater Field Measurement Results	24 25
	4.5 4.6	Surface Water Quality Monitoring	
		4.6.1 The Provincial Water Quality Objectives (PWQO)	
		4.6.2 Canadian Water Quality Guidelines (CWQG)	

	4.7	Surface Water Results	26
	4.8	Surface Water Trend Analysis	27
	4.9	Surface Water Field Measurement Results	27
	4.10	Leachate Characterization	
	4.11	Contaminant Attenuation Zone	
	4.12	Adequacy of the Monitoring Program	
		4.12.1 Monitoring Well Network Efficiency	
		4.12.2 Background Monitoring Well Efficiency	
	4.13	Supplemental Monitoring: Sediment, Benthic and/or Toxicity Monitoring	29
	4.14	Assessment of the Need for Implementation of Contingency Measures	29
	4.15	Waste Disposal Site Gas Impacts	29
	4.16	Effectiveness of Engineered Controls	
	4.17	Control Systems Monitoring	29
	4.18	QA/QC Results	
5.0	CON	CLUSIONS	
6.0	RECO	OMMENDATIONS	
7.0	MON	ITORING AND SCREENING CHECKLIST	
8.0	DISC	LAIMER	

APPENDICES

APPENDIX I	Figures
APPENDIX II	Borehole Logs
APPENDIX III	Summary Tables
APPENDIX IV	Photographic Log
APPENDIX V	Laboratory Certificates of Analysis
APPENDIX VI	Groundwater Trend Analysis
APPENDIX VII	Surface Water Trend Analysis
APPENDIX VIII	Monitoring and Screening Checklist

FIGURES

Figure 1	Кеу Мар
Figure 2	Site Plan
Figure 3	Groundwater and Surface Water Locations
Figure 4	Inferred Groundwater Contours – Spring 2023
Figure 5	Inferred Groundwater Contours – Fall 2023

TABLES

Table 1	Groundwater Monitoring Well Data
Table 2	Surface Water Monitoring Data
Table 3	Groundwater Quality Results – BH1
Table 4	Groundwater Quality Results – BH8
Table 5	Groundwater Quality Results – BH9
Table 6	Groundwater Quality Results – BH10
Table 7	Groundwater Quality Results – BH11
Table 8	Groundwater Quality Results - DP7
Table 9	Groundwater Quality Results – BH12
Table 10	Groundwater Quality Results – BH13
Table 11	Groundwater Quality Results – BH14
Table 12	B-7 Guideline Calculations – Spring 2023
Table 13	B-7 Guideline Calculations – Fall 2023
Table 14	Surface Water Quality Results – SW1
Table 15	Surface Water Quality Results – SW2
Table 16	Surface Water Quality Results - SW3
Table 17	Groundwater Duplicate Data
Table 18	Surface Water Duplicate Data

1.0 INTRODUCTION

Pinchin Ltd. (Pinchin) was retained by the Corporation of the Municipality of Magnetawan (Client) to prepare the 2023 annual groundwater and surface water monitoring report for the Croft Waste Disposal Site (the Site). The following report provides a detailed evaluation and summary of the 2023 monitoring data and was completed to constitute the 2023 Annual Monitoring Report. This document includes, but is not limited to a summary of historical geochemical data, a review/evaluation of the historical and current geochemical data (as well as groundwater flow) and a summary of geochemical trends.

The purpose of completing the monitoring program was to assess the hydraulic media for contaminants of concern as a compliance requirement under the Site Certificate of Approval (CofA) Number **A7034002** and the applicable regulatory requirements during the spring and fall of 2023. To achieve the reporting objectives of this Site monitoring program, Pinchin carried out groundwater and surface water sampling at the Site in general accordance with the documents referenced within this report.

1.1 Location

The Site property is located in Lot 26, Concession 11, within the Municipality of Magnetawan, District of Parry Sound, Ontario and is located approximately 12 kilometres (km) east-northeast of the Township of Magnetawan, Ontario. The Site is situated in an undeveloped area and the visibility of landfilling activities is limited from the adjacent roadway due to mature tree growth. The Site location is indicated on Figure 1 (all Figures are provided in Appendix I).

The Site is located at Universal Transverse Mercator (UTM) coordinates Zone 17U, 593,659 meters (m) Easting and 5,058,398 m Northing (North American Datum 1983). Landfill coordinates were obtained using a Global Positioning System and are accurate within 10 m.

1.1.1 Site Survey and Aerial Photography

At the time of preparation of this report, previous survey information of the Site and existing monitoring well elevations were provided to Pinchin for review. The available top of casing monitoring well elevation data obtained from the previous survey has been used in the following sections of this report to calculate groundwater elevation contours.

A topographic survey of the Site was completed in 2019 using an Unmanned Aerial Vehicle (UAV) in conjunction with the spring 2019 monitoring event completed by Pinchin for the purpose of creating an accurate aerial image of the Site while also capturing the current Site topographic conditions. An additional UAV survey was completed in 2023 in order to provide an assessment of the current deposited waste volume and waste disposal rates.

1.2 Ownership and Key Personnel

The Site is owned and operated by the Corporation of the Municipality of Magnetawan, located in Magnetawan, Ontario. The project was completed for the following representative on behalf of the Municipality:

Kerstin Vroom, Clerk/CAO Municipality of Magnetawan Government Office 4304 Highway #520 Magnetawan, Ontario POA 1PO The Competent Environmental Practitioner (CEP) for the Site groundwater and surface water monitoring program was Mr. Tim McBride of Pinchin Ltd. Mr. McBride's contact information is provided below:

Mr. Tim McBride, B.Sc., P.Geo., QP_{ESA} Pinchin Ltd. 662 Falconbridge Road, Unit #3 Sudbury, Ontario P3A 4S4

1.3 Description and Development of the Site

The Site is operated as a domestic landfill for municipal and non-hazardous, solid, industrial and commercial wastes to be utilized by residences of the area. The Site was approved with a total fill area of 2.5 hectares (ha) within a 33.7 ha property. A road with a locked gate is located east of the Site which provides access to the Site from the west side of 25th and 26th Side Road, approximately 1 km north of the intersection of 25th and 26th Side Road and Highway 520.

The active landfilling area is currently located within the northern portion of the Site. A site capacity survey was completed by D.M. Wills on November 1, 2018, which resulted in an estimated remaining capacity of approximately 23,565 cubic metres (m³) and an approximate remaining life expectancy of 39 years.

A map illustrating the site features is provided as Figure 2.

1.3.1 Site Document Review

Pinchin reviewed the following reports for the Site and are referenced within this document:

- Report entitled "2018 Annual Monitoring Report, Croft Waste Disposal Site, Magnetawan, Ontario" completed by D.M. Wills Associates Limited for the Corporation of the Municipality of Magnetawan dated March 2019 (the 2018 D.M. Wills Monitoring Report);
- Report entitled "2019 Annual Monitoring Report, Croft Waste Disposal Site, Magnetawan, Ontario" completed by Pinchin for the Municipality of Magnetawan dated December 12, 2019 (the 2019 Pinchin Monitoring Report);
- Report entitled "Aquifer Instrumentation Memo, Croft Waste Disposal Site, Magnetawan, Ontario" completed by Pinchin for the Municipality of Magnetawan dated June 16, 2020;
- Report entitled "2020 Annual Monitoring Report, Croft Waste Disposal Site, Magnetawan, Ontario" completed by Pinchin for the Municipality of Magnetawan dated February 2, 2020 (the 2020 Pinchin Monitoring Report);
- Report entitled "2021 Annual Monitoring Report, Croft Waste Disposal Site, Magnetawan, Ontario" completed by Pinchin for the Municipality of Magnetawan dated March 25, 2022 (the 2021 Pinchin Monitoring Report); and
- Report entitled "2022 Annual Monitoring Report, Croft Waste Disposal Site, Magnetawan, Ontario" completed by Pinchin for the Municipality of Magnetawan dated January 18, 2023 (the 2022 Pinchin Monitoring Report).

A copy of these documents can be obtained from the Client. Pinchin has relied on the information available in the previous environmental reports reviewed for the Site as part of this assessment. Information reviewed within this report is referenced in pertinent sections throughout this document.

1.4 Monitoring and Reporting Program Objectives and Requirements

The site specific CofA for the Site was not provided to Pinchin for review at the time of this monitoring period. The monitoring and reporting completed by Pinchin has been generally developed based on the Ministry of Environment, Conservation and Parks (MECP) document entitled "*Monitoring and Reporting for Waste Disposal Sites Groundwater and Surface Water Technical Guidance Document*" dated November 2010, as well as the Client's request for 2023 monitoring and annual reporting.

1.5 Assumptions and Limitations

Pinchin has assumed that the information generated from historical investigations is accurate and has been completed in accordance with standard engineering practices and regulations. It should be noted that the historical background information made available to Pinchin by the Client was limited, and as such previous reports have been relied on for information where required.

The scope of the monitoring activities was limited to the parameters listed in the 2018 D.M. Wills Monitoring Report and the 2019, 2020, 2021 and 2022 Pinchin Monitoring Reports for groundwater and surface water and was limited to the immediate area surrounding the Site. The investigations were limited solely to the groundwater within the monitoring well installations on-Site and the surface water surrounding the Site. The investigation does not constitute an exhaustive investigation of the Site property or adjacent properties for potentially unknown contaminants and/or other unknown sources of environmental impact.

Pinchin's limitation of liability and scope of work is as follows:

- The work performed in this report was carried out in accordance with the Terms and Conditions made part of the contract. The conclusions presented herein are based solely upon the scope of services and time and budgetary limitations described in the contract;
- The report has been prepared in accordance with generally accepted environmental study and/or engineering practices. No other warranties, either expressed or implied, are made as to the professional services provided under the terms of the contract and included in this report;
- The services performed and outlined in this report were based in part upon a previously installed monitoring network established by others and approved by the applicable regulatory agencies. Pinchin's opinion cannot be extended to portions of the Site which were unavailable for direct observations, reasonably beyond the control of Pinchin;
- The objective of this report was to assess the water quality conditions at the Site, given the context of the contract, with respect to existing environmental regulations within the applicable jurisdiction;
- The Site history interpreted herein relies on information supplied by others such as local, provincial and federal agencies, as well as Site personnel. No attempt has been made to independently verify the accuracy of such information, unless specifically noted in this report;

- Pinchin's interpretations relating to the landfill-derived leachate plume at the Site are described in this report. Where testing was performed, it was executed in accordance with the contract for these services. It should be noted that other compounds or materials not tested for may be present in the Site environment;
- The conclusions of this report are based in part on the information provided by others. The possibility remains that unexpected environmental conditions may be encountered at the Site in locations not specifically investigated. Should such an event occur, Pinchin must be notified in order that we may determine if modifications to the conclusions in this report are necessary;
- The utilization of Pinchin's services during future monitoring at the Site will allow Pinchin to observe compliance with the conclusions and recommendations contained herein. It will also provide for changes as necessary to suit field conditions as they are encountered; and
- Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, is the responsibility of such third parties. Pinchin accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

2.0 PHYSICAL SETTING

2.1 Geology and Hydrogeology

The Site is located in an area of low relief with numerous small shallow lakes and wetlands interspersed within forested lands dominated by black spruce and poplar. According to previous annual monitoring reports for the Site, the Ontario Geological Survey mapping indicates that the regional geology near the Site is dominated by Precambrian bedrock with local areas of very thin overburden and sand pockets. The underlying Precambrian bedrock is of gneissic composition with very little weathering and lies within the Ahmic Domain of the Central Gneiss Belt. According to the report, mapping indicates the presence of a glaciocustrine sand deposit in the vicinity of the Site, as well as a historical sand pit that operated in the area which is likely where the landfill was developed.

To the north of the Site, bedrock outcrops at surface and rises gradually in elevation toward the north, defining a minor east-west trending ridge approximately 50 m north of the Site. To the east of the Site, the bedrock gradually dips southward from the east-west trending ridge. To the south and west of the Site, the shallow bedrock is inferred to define a minor northwest trending bedrock ridge. Previous intrusive investigations also indicate that the overburden in this area appeared to be thin and was composed of sandy silt till and sand.

Based on the borehole logs for the monitoring wells and drive points at the Site, the subsoil conditions beneath the Site consist of sand and sandy silt till overlying gneissic bedrock. Borehole logs for the monitoring wells on-Site are provided in Appendix II with the exception of the borehole log for BH1. No other borehole logs were provided to Pinchin for review.

Static water levels were recorded by Pinchin in all of the accessible wells for each of the 2023 groundwater monitoring events with the exception of DP-9 during the fall monitoring event. Water levels were measured prior to purging and developing in preparation for sampling to ensure the water levels are representative of static conditions. Tables that summarize the spring and fall 2023 groundwater elevations, as measured by Pinchin personnel, are presented in Table 1 (all tables are provided in Appendix III).

In general, the static groundwater levels exist within 4 m of surface for most wells with the deepest depth to water (3.11 metres below ground surface (mbgs)) recorded at BH-8, located northwest of the Site during the fall monitoring event. Groundwater movement at the Site has been established (by water level contouring) as being directed in a northerly direction with the highest groundwater elevations recorded at BH1 and the lowest at BH-12. In addition, there appears to be a radial influence on the groundwater table associated with the apparent groundwater mounding within the above grade waste deposits.

2.2 Surface Water Features

An unnamed tributary to Ahmic Lake is located to the south of the Site where surface water monitoring location SW-1 is located. Love Lake is located approximately 500 m northeast of the Site, where surface water monitoring location SW-2 is located to monitor overland flow into the lake from the north side of the Site. A third surface water monitoring location, SW-3, is situated in a pool of water along the northwest edge of the landfill footprint to characterize surface water run-off originating within the landfill footprint.

2.3 Historical Data

Pinchin reviewed the 2018 D.M. Wills Annual Monitoring Report and the 2019, 2020, 2021 and 2022 Pinchin Annual Monitoring Reports to evaluate historical data and groundwater and surface water quality conditions. No other water quality data from the existing monitoring well network was available to review as part of this monitoring program.

2.3.1 Historical Groundwater Data

Monitoring well BH1 was determined to be located upgradient of the waste deposits and has historically been used to monitor background water quality at the Site. Based on the results of the 2019, 2020, 2021 and 2022 Reports, moderate leachate effects are present immediately downgradient of the landfill along the limit of waste as measured at wells BH-10 and BH-11 (which both quantified Guideline B-7

exceedances in 2022 for manganese, chloride, total dissolved solids (TDS) and dissolved organic carbon (DOC)). The results also indicated that well BH-9 may also be experiencing minor leachate effects for multiple parameters which were interpreted to be attenuating with further distance from the Site. The furthest downgradient well, BH-8, was interpreted to be only slightly affected by landfill leachate. It was noted that significant distance to the downgradient (northern) property boundary exists to allow for additional natural attenuation.

Additional well installations were recommended to further characterize the groundwater at the Site in the downgradient directions and closer to the property boundary. It was recommended that one well be located directly north of the proposed limit of the waste and one further downgradient from BH-10 and BH-11 in the east-northeast.

2.3.2 Historical Surface Water Data

A review of the 2019, 2020, 2021 and 2022 surface water quality results identified slight leachate effects at the downgradient surface water location SW-2. These effects were interpreted to be minor and to potentially be mostly attributed to naturally elevated parameters of iron, aluminum, phenols, total phosphorous and cobalt.

3.0 METHODOLOGY

3.1 Scope of Work

The objectives of the monitoring program as requested by the Client included the following scope of work:

- Mobilization to the Site during the spring and fall of 2023 and collection of groundwater and surface water samples from the existing well network and surface water monitoring locations;
- Submission of the groundwater and surface water samples to an accredited analytical laboratory for analysis of the chemical parameters specified by the client; and
- Preparation of a report outlining the 2023 field work completed and the analytical results, an evaluation of the results and any subsequent recommendations.

The investigation methodology was also conducted in general accordance with, and reference is made to, the following regulatory and guidance documents:

• MECP document entitled "*Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario*", dated December 1996 (MECP Sampling Guideline);

- MECP document entitled "*Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act*", dated March 9, 2004, amended July 1, 2011 (Analytical Methods);
- Ontario Regulation 169/03 "Ontario Drinking Water Quality Standards" under the Safe Drinking Water Act, dated 2002;
- MECP document entitled "*Technical Support Document for Ontario Drinking Water* Standards, Objectives and Guidelines", dated June 2003 (ODWQS Guideline);
- MECP document entitled "Incorporation of the Reasonable Use Concept into MECPE Groundwater Management Activities, Guideline B-7 (formerly 15-08)" (Guideline B-7), dated April 1994;
- MECP document entitled "*Determination of Contaminant Limits and Attenuation Zones, Procedure B-7-1*", (formerly referenced by 15-08), dated 2015 and updated in 2022;
- Ontario Regulation 903 R.R.O. 1990 "*Wells*", under the Ontario Water Resources Act (as amended);
- MECP document entitled "*Water Management Policies Guidelines Provincial Water Quality Objectives*" (PWQO), dated July 1994, revised February 1999; and
- Canadian Council of Ministers of the Environment (CCME) document entitled "Canadian Water Quality Guidelines" (Table 3-1 – Summary Guidelines for Freshwater Aquatic Life) dated November 2008.

3.2 Groundwater Monitoring Well Locations

Historically, the original groundwater monitoring well network for the Site was established in 2003 and consisted of seven shallow overburden wells (BH-1, BH-2, BH-3, BH-4, BH-5, BH-6 and BH-7). Monitoring wells BH-2, BH-3, BH-5, BH-6 and BH-7 were found to be destroyed prior to 2016. Additional monitoring wells (BH-8, BH-9, BH-10 and BH-11) and drive point monitors (DP-6, DP-7, DP-8 and DP-9) were installed in June 2015 to replace the destroyed wells. In the spring of 2017, monitoring well BH-4 and drive point monitor DP-6 were also found to be destroyed due to landfilling operations at the Site.

The configuration of the existing monitoring well network was interpreted to be sufficient to monitor the performance of the landfill; however, was deemed to be overly conservative as a measure of compliance as these wells were being utilized for the evaluation of the Site versus the MECP Guideline B-7 procedure which is applicable at the downgradient property line. As a result, the installation of three additional bedrock monitoring wells (BH-12, BH-13 and BH-14) was recommended in the 2019 Pinchin Annual Monitoring Report in order to allow for further characterization of groundwater quality downgradient of the

Site in the north and east directions. The installation of these additional monitoring wells was completed on April 22, 2020. The details of the well installations are included in the Pinchin Aquifer Instrumentation Memo dated June 16, 2020. Borehole logs for each of the three newly installed wells are included within Appendix II.

The current groundwater monitoring well network at the Site consists of eight bedrock groundwater monitoring wells (BH-1, BH-8, BH-9, BH-10, BH-11, BH-12, BH-13 and BH-14) and three drive point monitors (DP-7, DP-8 and DP-9). The locations of all the monitoring wells included in the current monitoring program are illustrated on Figure 3. Detailed locations with coordinates in NAD 83, and the available monitoring well elevations for top of casing are provided in Table 1.

All groundwater monitoring wells were sampled during the spring and fall 2023 sampling events. Based on the 2022 Pinchin Monitoring Report, all three of the drive point monitors have consistently been observed to have an insufficient volume of water at the time of sample collection and have since been retained as water level only monitoring locations to supplement the groundwater elevation monitoring for the Site.

The following table presents a summary of the well construction details and respective on-Site positions of the groundwater monitoring network based on the borehole logs provided in Appendix II. Construction details for monitoring well BH-1 are unknown as Pinchin was not provided the borehole log for this well to review at the time of preparation of this report. All wells were inspected and found to be in good condition, and no wells displayed evidence of a condition non-compliant with Ontario Regulation 903 with the exception of BH-11 which was found to have a broken casing lid, as well as no PVC cap. A photographic log of all groundwater monitoring wells is provided in Appendix IV.

Well ID	Condition	Total Depth (mbgs)	Screened Interval (mbgs)	Screened Interval (masl)	Unit Screened		
BH-1	Good	Unknown	Unknown				
BH-8	Good	5.72	1.2 – 5.7	290.4 - 285.9	Gneissic bedrock		
BH-9	Good	3.89	0.8 – 3.9	288.4 - 285.6	Sand and Gneissic bedrock		
BH-10	Good	4.06	0.9 - 4.1	290.0 - 286.8	Sand and Gneissic bedrock		
BH-11	Poor	4.39	0.9 - 4.4	289.9 - 286.4	Gneissic bedrock		
DP-7	Good	1.72	1.0 – 1.7	288.3 - 287.6	Sandy silt till		
DP-8	Good	1.41	0.7 – 1.4	289. 8 – 289.1	Sand		
DP-9	Good	1.27	0.5 – 1.3	289.5 – 288.7	Sand		
BH-12	Good	6.10	3.0 - 6.0	285.9 - 282.9	Gneissic bedrock		

Well ID	Condition	Total Depth (mbgs)	Screened Interval (mbgs)	Screened Interval (masl)	Unit Screened
BH-13	Good	6.10	3.0 - 6.0	287.8 - 281.8	Gneissic bedrock
BH-14	Good	6.10	3.0 - 6.0	286.4 - 283.4	Gneissic bedrock

The following table illustrates the location of each of the monitoring wells with respect to its rationale in the annual monitoring program.

Monitoring Well ID	Location	Rationale
BH-1	Southwest of the Site	Background
BH-8	Northwest of the Site	Downgradient
BH-9	Immediately northwest of the Site	Downgradient
BH-10	Immediately east of the Site	Immediately Downgradient
BH-11	Immediately northeast of the Site	Immediately Downgradient
DP-7	Northwest of the Site	Downgradient
DP-8	East of the Site	Downgradient
DP-9	East of the Site	Downgradient
BH-12	North of the Site	Downgradient
BH-13	Northeast of the Site	Downgradient
BH-14	Northeast of the Site	Downgradient

3.3 Surface Water Monitoring Locations

The Site has three historical points for surface water monitoring, SW1 through SW3. All surface water monitoring locations were monitored during the spring and fall 2023 sampling events. The following table illustrates the location of each of the surface water monitoring locations with respect to its rationale in the annual monitoring program.

Monitoring Well ID	Location	Rationale
SW-1	Stream to the south of the Site, at culvert on west side of 25 th and 26 th Side Road North.	Upstream Monitoring Location
SW-2	Love Lake, north of the Site.	Downstream Monitoring Location
SW-3	Pool of water at northwest corner of the Site.	Source Monitoring Location

The locations of the surface water monitoring locations are illustrated on Figure 3. Details regarding the surface water monitoring locations are provided in Table 2. Photos of all surface water monitoring locations are provided in Appendix IV.

3.4 Monitoring Frequency

As per previous annual monitoring events, groundwater and surface water was sampled twice annually by Pinchin during 2023 in the spring and fall. Groundwater and surface water sampling events occurred on the following dates:

- Spring May 10, 2023; and
- Fall September 28, 2023.

3.5 Monitoring Parameters

3.5.1 Groundwater Monitoring Parameters

Groundwater samples were submitted for laboratory analysis of the parameters listed in the previous monitoring reports. At the time of sample collection, field readings for the following parameters were measured: temperature, pH, conductivity, oxidation reduction potential (ORP) and dissolved oxygen (DO).

3.5.2 Surface Water Monitoring Parameters

Surface water samples were submitted for laboratory analysis of the parameters listed in the previous monitoring reports. At the time of the surface water sample collection, field readings for the following parameters were measured: temperature, pH, conductivity, ORP and DO.

3.6 Monitoring Procedures and Methods

3.6.1 Standard Operating Procedures

The following Pinchin Standard Operating Procedures (SOPs) were followed by Pinchin field personnel for each portion of this project:

- Groundwater Sampling SOP; and
- Surface Water Sampling SOP.

All Pinchin monitoring SOPs have been developed in accordance with the MECP Sampling Document and are consistent with standard engineering practices.

3.6.2 Groundwater Monitoring Activities

To perform the groundwater monitoring activities, the following tasks were conducted:

- Pinchin notified the Client prior to field activities, and subsequently mobilized staff to the Site to complete the sampling program;
- Static groundwater levels were collected using a SolinstTM water level tape.
 Measurements were collected from the top of riser pipe;
- During the monitoring events, groundwater from each monitoring well was purged prior to the collection of the sample using a moderate-flow sample methodology via high-density polyethylene (HDPE) or low-density polyethylene (LDPE) 3/8" tubing and a WaterraTM inertial foot valve system. The inertial pump system was chosen as an approved method to minimize sediment/particulate within each sample and to minimize sample agitation and well trauma in accordance with the MECP Sampling Document. Pinchin purged a minimum of three well volumes to a maximum of six well volumes using the inertial pump system until the well volume column was representative of the surrounding formation. During purging activities, additional groundwater monitoring parameters were collected from each monitoring well using a YSI-556 water quality meter for measurement of field parameters. Sample residual was disposed of onto the ground surface, on-site and up-gradient within the landfill confines;
- Groundwater samples were collected using the inertial pump system in accordance with the MECP Sampling Document. Dissolved metals were field-filtered using a dedicated inline 0.45 micron disposable filter. Upon completion of field sampling and monitoring activities, all samples collected were submitted to the project laboratory, SGS Canada Inc. (SGS) in Lakefield, Ontario. All parameters were analyzed by the project laboratory using MECP approved procedures and are consistent with the analytical methods prescribed in the Analytical Methods document; and
- The groundwater samples collected were analyzed at the project laboratory for the parameters listed in the previous monitoring reports. Groundwater sample results were compared to the applicable ODWQS as applied in accordance with the ODWQS
 Guideline document. Groundwater sample results were also compared to the reasonable usage parameters and were assessed using Guideline B-7 to establish and determine levels of contaminant discharges to the groundwater formation which would be considered acceptable by the MECP from naturally attenuating landfill sites with respect to human consumption and potable considerations.

3.6.3 Surface Water Monitoring Activities

To perform the surface water monitoring activities, the following tasks were conducted:

- Pinchin notified the Client prior to field activities and subsequently mobilized staff to the Site;
- All field activities at each monitoring location were initiated at down-stream locations working up-stream to avoid sediment disturbance and influencing sample integrity;
- Care was taken during collection of surface water samples to ensure that a representative sample was collected and that underlying sediments were not disturbed. For the surface water samples only, no filtration was done (in accordance with MECP surface water sampling protocols);
- Surface water samples were collected during each sampling event using a direct grab sampling methodology in accordance with the MECP Sampling Document. Upon completion of field sampling and monitoring activities, all samples collected were submitted to SGS. All parameters were analyzed by the project laboratory using MECP approved procedures and are consistent with the analytical methods prescribed in the Analytical Methods document;
- During sampling activities, surface water monitoring field parameters were collected at each surface water monitoring location using a YSI-556 water quality meter; and
- Surface water samples were analyzed during the monitoring event at the pre-determined monitoring locations for parameters listed in the previous monitoring reports. Sample results were compared to the applicable PWQO and CWQG criteria.

3.6.4 Groundwater and Surface Water Field Measurements

Prior to sampling groundwater in the wells, Pinchin monitored groundwater depth using a Solinst[™] 30-metre electronic water level meter. The water level tape is calibrated in 1.0 mm increments. Reproducibility of the depth measurements is generally within 2.0 mm or less.

Subsequent to groundwater depth measurement and during purging activities, additional groundwater monitoring parameters were collected from each monitoring well using a YSI-556 water quality meter for measurement of field parameters. Field parameters at each surface water monitoring location were also collected using the YSI-556. The following field parameters were measured during the 2023 monitoring

program:

- <u>Dissolved Oxygen (DO)</u> refers to the relative quantity of oxygen molecules which are dissolved or carried within a quantity of water. Oxygen enters water as rooted aquatic plants and algae undergo photosynthesis and as oxygen is transferred across an air and water interface. Oxygen's solubility in water is indirectly correlated with water's temperature, salinity and pressure. DO concentrations have a significant effect on groundwater quality by regulating the valence state of trace of metals and constraining the bacterial metabolism of dissolved organic species;
- <u>Conductivity</u> is the measurement of water's capacity to pass an electrical current. It is considered to be a reasonable indicator of ionic activity and dissolved solids concentration levels. It is affected by the presence of inorganic dissolved solids which carry a negative charge such as chloride, nitrate, sulphate and phosphate anions, or a positive charge such as sodium, magnesium, calcium, iron, and aluminum cations. Organic compounds such as oil and phenol do not conduct an electrical current very well, and would therefore, have low conductivity in water. Conductivity is also directly correlated to the water temperature. Specific conductivity is a measurement of conductivity values which have been compensated to 25°C;
- <u>*pH*</u> is a measure of water's acidic/basic properties on a logarithmic scale from 1 (strongly acidic) to 14 (strongly alkaline or basic). It determines the solubility and biological availability of chemical constituents such as nutrients and heavy metals. For example, in addition to affecting how much and what form of phosphorus is most abundant in the water, pH also determines whether aquatic life can use it. The degree to which heavy metals are soluble determines their toxicity. Metals tend to be more toxic at lower pH values because they are more soluble. Excessively high and low pHs can have serious environmental and health effects. A high pH may cause the release of iron, copper or lead into potable water, corrosion on water pipes and water using appliances and reduces the effectiveness of water disinfection with chlorine. Low pH values may be indicative of groundwater contamination;
- <u>Temperature</u> has a dramatic influence on water quality. The rate of chemical reactions is generally correlated to temperature which in turn affects the biological availability of nutrients within the water. As previously mentioned, oxygen's solubility in water is indirectly correlated with its temperature. Declining concentrations of oxygen within warming water is magnified by aquatic plants increasing metabolism as water

temperature increases. Low concentrations of DO weaken aquatic plants resistance to disease, parasites and other pollutants; and

• <u>Oxidation-reduction potential (ORP)</u> characterizes the oxidation-reduction state of the water on a scale from approximately -300mV (strongly reducing) up to +500mV (strongly oxidizing). The primary application of ORP is recording significant changes in the redox potential which is observed when purging a stagnant water column in piezometer and replacing it with "fresh" groundwater.

3.6.5 Record Keeping and Field Notes

Field notes were collected during the water quality monitoring events and recorded relevant observations including, but not limited to:

- Dates and time of work being completed;
- Instrumentation and instrument condition;
- Calibration methods and results;
- Field parameter measurements;
- Field personnel conducting the investigations;
- Field methods used;
- Sampling location identifications;
- Sampling equipment and condition;
- Sample identification (i.e., type, media, number of containers, etc.);
- Sample preparation methods (i.e., preservatives, filtration, etc.);
- Field QA/QC measurements;
- Field and sample identifiers;
- Anomalous conditions (i.e., damage to monitoring wells);
- Photographs of monitoring wells and monitoring stations;
- Weather conditions at the time of the monitoring events; and
- Field conditions.

All raw data and field notes are preserved and retained in Pinchin's custody.

3.7 Quality Assurance for Sampling and Analysis

Pinchin uses recognized industry standards, including the Canadian Council of Ministers of the Environment (CCME) *Subsurface Assessment Handbook for Contaminated Sites* and MECP's manual *Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario* for conducting environmental assessments. For quality assurance, all work is supervised and internally reviewed by senior staff members. As such, various QA/QC protocols were followed during the water quality sampling events to ensure that representative samples were obtained, and that representative analytical data were reported by the laboratory.

Field QA/QC protocols that were employed by Pinchin included the following:

- Clean, labelled and pre-preserved (when applicable) sample containers were provided by the laboratory;
- Water quality samples were placed in laboratory-supplied sample jars;
- The monitoring wells were purged to remove stagnant water prior to sample collection, so that representative groundwater samples could be obtained. Dedicated purging and sampling equipment was used for monitoring well development, purging and sampling to minimize the potential for cross-contamination;
- All water quality samples were placed in coolers on ice immediately upon collection with appropriate sample temperatures maintained prior submission to the laboratory;
- Dedicated and disposable Nitrile[™] gloves were used for all sample handling;
- All non-dedicated monitoring and sampling equipment (i.e. water level meter and YSI-556) was cleaned before initial use and between uses to minimize the potential for cross-contamination by washing with an Alconox[™]/potable water mixture followed by a deionized water rinse;
- Field duplicate groundwater and surface water samples were collected during the spring and fall sampling event (1 in 10); and
- Sample collection and handling procedures were performed in general accordance with the MECP Sampling Guideline.

The SGS laboratory has an established QA/QC program and is a member of the Canadian Association for Laboratory Accreditation (CALA) and is accredited by the Standards Council of Canada (SCC) for specified environmental analyses.

SGS's internal laboratory QA/QC consisted of the analysis of laboratory duplicate, method blank, matrix spike and spiked blank samples, an evaluation of relative percent difference calculations for laboratory duplicate samples and an evaluation of surrogate recoveries for the method blank, matrix spike and spiked blank samples.

3.8 Data Quality Evaluation

In order to provide confidence in the data obtained, a comprehensive QA/QC component was included in the monitoring program. The QA/QC procedures developed for this monitoring program are prepared in accordance with MECP Sampling Document and in most cases, exceed the minimum requirements.

Relative per cent difference (RPD) values (the absolute difference between two values divided by the average value and expressed as a per cent) were calculated between the parent sample and the field duplicate as part of the QA/QC program. RPD results of sample and duplicate analyses that are less than 50 percent indicate an acceptable level of analytical uncertainty. RPD values calculated for measured analyte concentrations for sample and duplicate pairs that exceed 50 per cent generally warrant discussion because they may indicate the presence of elevated analytical uncertainty and a potential for making interpretive errors based on the analysis results. Use of calculated RPD values to assess analytical uncertainty when using measured analyte concentrations for sample duplicate pairs is not appropriate when either measured analyte concentration is within a multiple of 5 of the method detection limit (a value designated as the practical quantification limit (PQL)) where analytical uncertainty is typically elevated.

All field instrumentation calibration checks were completed by Pinchin field staff members prior to use on-Site. All field operations conducted by Pinchin field staff members were completed using standard equipment decontamination and sampling procedures, and no deviations from the sampling plan were noted.

4.0 ASSESSMENT, INTERPRETATION AND DISCUSSION

4.1 Groundwater Flow Interpretation

The hydraulic flow vector was historically estimated to range to the north. The groundwater flow direction may be influenced by seasonal variations in the amount of precipitation by aquifer heterogeneity and the deposited fill material at the Site. Groundwater level trends indicate seasonal fluctuations in the depth to groundwater which is consistent with seasonal fluctuations in precipitation events. The depth to groundwater measurement results are presented in Table 1.

During the spring monitoring event on May 10, 2023, the depth to groundwater was observed to range from 292.89 metres above sea level (masl) at BH-1 to 288.47 masl at DP-7. During the fall monitoring event on September 28, 2023, the depth to groundwater was observed to range from 292.18 masl at BH-1 to 2987.98 masl at BH-12.

Accurate triangulation of the water table elevations was undertaken for the 2023 sampling events using the available monitoring well system and the survey elevation data. The inferred groundwater contours for both the spring and fall events are presented on Figures 4 and 5, respectively. The presentation of the groundwater contours and the associated inferred groundwater flow direction for the 2023 sampling events, as illustrated on Figures 4 and 5, indicates that groundwater flows towards the north which is consistent with the findings of previous monitoring reports.

4.2 Groundwater Quality Monitoring

4.2.1 The Reasonable Use Criteria Assessment (RUC)

Guideline B-7, the "reasonable use concept" (RUC) approach, is the MECP's groundwater management strategy for mitigating the effect of contamination on properties adjacent to its source.

It establishes procedures for determining the reasonable use of groundwater on a property adjacent to sources of contaminants and establishes limits on the discharge of contaminants from facilities which dispose of waste into the shallow subsurface.

The application of "reasonable use" is outlined in Procedure B-7-1 "*Determination of Contaminant Limits and Attenuation Zones*". The procedure determines the maximum concentration (Cm) of a particular contaminant that would be acceptable in the groundwater beneath an adjacent property and is calculated in accordance with the relationship:

$$C_{\rm m} = C_{\rm b} + x \ (C_{\rm r} - C_{\rm b})$$

 C_b – This is the background concentration of the particular groundwater contaminant in consideration before it has been affected by human activities. From this, it is possible to calculate the extent of human activities impact on contaminant levels.

 C_r – In accordance with the Ontario Water Management Guideline, this is the maximum concentration of a particular contaminant that should be present in the groundwater. This value is dependent on property's use of the groundwater as outlined in B-7. It also allows for the total amount of contamination. Pinchin conservatively assumes that the reasonable use of the groundwater on-site is potentially for potable drinking purposes.

x - As determined by the MECP, this constant determines the extent which the contamination has on the groundwater's use. For drinking water, x is 0.5 for non-health related parameters or 0.25 for health-related parameters. For other reasonable uses, it is 0.5.

Contamination concentrations which exceed C_m may have an appreciable effect on the use of an adjacent property, and as such the Site should be managed in a manner to minimize environmental damage, or the operation should be modified. It is acceptable to modify the operation of the disposal site to meet the specified limits. However, if these limits are exceeded, all waste disposals, except for that done in conjunction with a reasonable plan for closure or with remedial activities, should be terminated until the specified limits have been met, or until monitoring data indicate that these limits will be met. Determination of the replacement of contaminated water supplies and the abatement of the contaminant plume must be made on a case-by-case basis in accordance with "*Resolution of Groundwater Quality Interference Problems*", Guideline B-9. For the purpose of evaluating compliance with respect to the RUC, Pinchin has compared the calculated C_m values versus the applicable downgradient compliance monitoring wells.

4.2.2 The Ontario Drinking Water Quality Standards (ODWQS)

Through the establishment of the ODWQS, the province of Ontario has determined legally enforceable standards on contaminants in drinking water. The standards are designed to protect public health by restricting the quality of specific contaminants in drinking water. Three categories of contaminates are regulated under the Ontario Regulation 169/03 Drinking Water Standards:

- Microbiological Originating from human and animals waste, coliforms and bacteria are common in the environment. Most are harmless; however, their presence may be indicative of other harmful bacteria in the water. Under the ODWQS, Escherichia coli ("E. Coli"), fecal coliforms and total coliforms must be non-detectable in drinking water;
- Chemical ODWQS regulates maximum quantities of organic and inorganic chemicals allowed in drinking water. Industrial discharges or agricultural runoff are not necessarily removed by drinking water treatment. Consuming water exhibiting a greater concentration of these chemicals than the ODWQS may cause serious health problems; and
- Radiation Natural and artificial radio nuclides are also regulated in the ODWQS.
 Standards are expressed as maximum allowable concentrations in becquerels per litre ("L"). Radiological contaminants include radio nuclides such as radium 228 which are caused from the erosion of naturally occurring deposits, or artificial radio nuclides such as tritium released into the water by nuclear power plants. Radiological contaminants do not

naturally occur within the study area and the disposal of radiological waste was not suspected in the Site, and as a result, radiation was not monitored for this study.

The ODWQS Guideline Document is the MECP technical guidance document which provides guidance on applicability of the ODWQS and also provides applicable interim guidelines where legal standards are absent. Both the ODWQS and Guideline B-7 were used in assessing the groundwater results obtained during the 2023 monitoring program.

4.3 Groundwater Results

The following discussion of parameters documents the groundwater quality in comparison to the calculated reasonable use criteria as per Guideline B-7. The reasonable criteria are MECP's groundwater management strategy for mitigating the effect of contamination on properties adjacent to its source. It establishes procedures for determining what constitutes the reasonable use of groundwater on a property adjacent to sources of contaminants and establishes limits on the discharge of contaminants from landfills which have a potential to migrate hydraulically downgradient and off-site and impair the current and future groundwater use at downgradient properties. To implement Guideline B-7, groundwater samples collected from downgradient monitoring wells have been compared to the calculated RUC values (C_m).

Monitoring well BH-1 is located potentially hydraulically upgradient of the Site and has been used to estimate the background water quality coming onto the Site. An average of the historical results from BH-1 has been applied as the source of background water quality for the Guideline B-7 calculations.

The analytical data for each well in comparison to the applicable regulatory criteria is provided in Tables 3 through 11. An evaluation of the RUC criteria in comparison to the downgradient compliance wells is provided in Tables 12 and 13 for the spring and fall events, respectively. Copies of the laboratory analytical reports are presented in Appendix V. The following is a breakdown of the water quality observed the monitoring well locations with comparison to the background quality and leachate being produced on-Site.

4.3.1 Background Water Quality Evaluation

Monitoring Well BH1

Background water quality observed southwest of the waste fill area at BH-1 did not identify elevated levels of common landfill-related contaminant parameters such as conductivity, TDS, chloride, sulphate, calcium, sodium, potassium or nitrate. During the spring and fall sampling events, concentrations of hardness (high and low), DOC, iron, manganese, turbidity and aluminum were quantified above the recommended levels specified in the ODWQS. These parameters are either operational guidelines or

aesthetic objectives for drinking water systems set by the ODWQS and are not considered to be a significant environmental concern originating from the Site.

4.3.2 Leachate Source Quality Evaluation

No groundwater monitoring wells in the existing monitoring well network are situated within the active landfill area to evaluate the source leachate quality.

4.3.3 Immediately Downgradient Water Quality Evaluation

Monitoring Well BH-10

In comparison to background water quality, groundwater observed immediately east of the waste fill area at BH-10 was observed to have higher concentrations of conductivity, alkalinity, TDS, chloride, sodium, potassium and nitrate indicating temperate impacts from the landfill which is consistent with historical observations at this location. It is expected that the groundwater at this location is impacted with minor amounts of landfill leachate considering its close proximity to the active fill zone (as it is essentially considered to be a source well as opposed to a compliance station). Elevated hardness (high), alkalinity (high), TDS, chloride, sodium, DOC, manganese and turbidity concentrations were identified at BH-10 that exceeded the ODWQS and/or the Guideline B-7 criteria. Hardness, alkalinity, TDS, DOC, chloride, sodium, turbidity and manganese are either operational guidelines or aesthetic objectives for drinking water systems set by the ODWQS and are not considered to be a significant environmental concern originating from the Site. Elevated concentrations of DOC, manganese and turbidity are also quantified at the background monitoring location; however, the concentrations of these parameters are further elevated beyond that observed in the background and are therefore considered to be landfill derived.

Monitoring Well BH-11

In comparison to background water quality, groundwater observed immediately northeast of the Site at BH-11 was observed to have higher concentrations of conductivity, chloride, sodium, potassium and nitrate indicating temperate impacts from the landfill which is consistent with historical observations at this location. It is expected that the groundwater at this location is impacted with minor amounts of landfill leachate considering its close proximity to the active fill zone. Elevated hardness (low), DOC, iron, manganese, turbidity and aluminum concentrations were identified at BH-11 that exceeded the ODWQS criteria. Hardness, DOC, iron, turbidity, manganese and aluminum are either operational guidelines or aesthetic objectives for drinking water systems set by the ODWQS and is not considered to be a significant environmental concern originating from the Site. No exceedances of the Guideline B-7 were quantified at BH-11 during the 2023 monitoring period.

Elevated concentrations of DOC, manganese, aluminum and turbidity are also quantified at the background monitoring location; however the concentrations of these parameters are further elevated at BH-11 and are therefore considered to be landfill derived.

4.3.4 Downgradient Water Quality Evaluation

Monitoring Well BH-8

In comparison to background water quality, groundwater observed northwest of the Site was observed to have generally similar concentrations of conductivity, alkalinity, TDS, nitrate, chloride, sulphate, calcium, sodium and potassium indicating little to no impacts from the landfill which is consistent with historical observations at this location. It is interpreted that natural attenuation of the landfill leachate is occurring with distance from the active fill zone. Depressed hardness (low) and alkalinity (low) with elevated aluminum and turbidity concentrations were identified at BH-8 that exceeded the ODWQS. Concentrations of alkalinity (low) quantified during the spring of 2023 exceeding the Guideline B-7 criteria. Alkalinity is an operational guideline for drinking water systems set by the ODWQS and is not considered to be a significant environmental concern originating from the Site.

Monitoring Well BH-9

In comparison to background water quality, groundwater observed northwest of the Site at BH-9 was observed to have slightly higher concentrations of conductivity, alkalinity, TDS, chloride, sulphate, calcium, sodium and potassium indicating minor impacts from the landfill which is consistent with historical observations at this location. These elevated concentrations are also observed to attenuate to concentrations similar to background conditions at the further downgradient monitoring location, BH-8. Elevated hardness (high), DOC, TDS, manganese, iron, aluminum and turbidity concentrations were identified at BH-9 that exceeded the ODWQS and/or the Guideline B-7 criteria. These parameters are either operational guidelines or aesthetic objectives for drinking water systems set by the ODWQS and are not considered to be a significant environmental concern originating from the Site. Furthermore, elevated concentrations of these parameters (with the exception of high hardness) are also quantified at the background monitoring location; however, the concentrations of DOC, iron and manganese are further elevated at BH-9 and are therefore considered to be landfill derived.

Monitoring Well BH-12

Groundwater monitoring well BH-12 was installed in April 2020, in order to characterize downgradient water quality to the north of the Site. In comparison to background water quality, groundwater observed at monitoring well BH-12 was observed to have generally similar concentrations of conductivity, alkalinity, TDS, nitrate, chloride, sulphate, calcium, sodium and potassium, indicating very minor impacts from the landfill. It is interpreted that natural attenuation of the landfill leachate is occurring with distance from the

active fill zone. Depressed hardness (low) with elevated iron, manganese and turbidity concentrations were identified at BH-12 that exceeded the ODWQS. These parameters are all either operational guidelines or aesthetic objectives for drinking water systems set by the ODWQS and are not considered to be a significant environmental concern originating from the Site. Furthermore, similar concentrations of all of these parameters are also quantified at the background monitoring location and therefore are not considered to be landfill derived. No exceedances of the Guideline B-7 criteria were quantified at BH-12.

Further monitoring events are required to establish a scientifically defensible database at this monitoring location before this interpretation can be confirmed.

Monitoring Well BH-13

Groundwater monitoring well BH-13 was installed in April 2020 in order to characterize downgradient water quality to the northeast of the Site, further downgradient from wells BH-10 and BH-11 which have quantified temperate leachate impacts. In comparison to background water quality, groundwater observed at monitoring well BH-13 was observed to have generally similar concentrations of conductivity, alkalinity, TDS, nitrate, chloride, sulphate, calcium, sodium and potassium indicating very minor impacts from the landfill. It is interpreted that natural attenuation of the landfill leachate is occurring with distance from the active fill zone. Depressed hardness (low) and alkalinity (low) with elevated iron, manganese, turbidity and aluminum concentrations were identified at BH-13 that exceeded the ODWQS. These parameters are all either operational guidelines or aesthetic objectives for drinking water systems set by the ODWQS and are not considered to be a significant environmental concern originating from the Site. Furthermore, similar concentrations of all of these parameters are also quantified at the background monitoring location; and therefore, are not considered to be landfill derived. No exceedances of the Guideline B-7 criteria were quantified at BH-13 with the exception of alkalinity (low) during the spring sampling event.

Further monitoring events are required to establish a scientifically defensible database at this monitoring location before this interpretation can be confirmed.

Monitoring Well BH-14

Groundwater monitoring well BH-14 was installed in April 2020, in order to further characterize downgradient water quality to the northeast of the Site, closer to the property boundary. In comparison to background water quality, groundwater observed at monitoring well BH-14 was observed to have slightly higher concentrations of conductivity, alkalinity, TDS, chloride, sulphate, calcium and sodium indicating minor impacts from the landfill. It is interpreted that natural attenuation of the landfill leachate is occurring with distance from the active fill zone as these concentrations are significantly reduced in comparison to those quantified at BH-11. Elevated hardness (high), iron, manganese and turbidity concentrations were identified at BH-14 that exceeded the ODWQS criteria. These parameters are all either operational

guidelines or aesthetic objectives for drinking water systems set by the ODWQS and are not considered to be a significant environmental concern originating from the Site. Furthermore, elevated concentrations of all of these parameters, except for hardness, are also quantified at similar concentrations at the background monitoring location; and therefore, are not considered to be landfill derived. No exceedances of the Guideline B-7 were quantified at BH-14 during the 2023 monitoring period.

Further monitoring events are required to establish a scientifically defensible database at this monitoring location before this interpretation can be confirmed.

In summary, the current 2023 groundwater monitoring data indicates that the Site is continuing to effectively operate as designed, as a natural attenuation type facility, with any landfill derived groundwater impacts attenuated to acceptable levels prior to the downgradient property boundaries.

4.4 Groundwater Trend Analysis

A hydrograph was developed to identify any changes in the historical and current groundwater elevation data over time for each of the wells. A series of time versus concentration graphs were also developed to evaluate the concentrations of several select landfill indicator parameters (including alkalinity, chloride, DOC, pH, TDS, nitrate, aluminum and copper) at each monitoring well for the Site. Current and historical groundwater quality data was utilized to identify any apparent trends or inconsistencies in the water quality within the monitoring well network. The groundwater trend analysis graphs are provided in Appendix VI.

The groundwater elevations displayed on the hydrograph indicate generally stable elevations with respect to time at all monitoring well locations with the exception of BH-8 which produced a water elevation lower than the historical record during the fall of 2019. This groundwater elevation has returned to stabilized conditions during recent monitoring events. The fall 2022 groundwater elevation at BH-13 was recorded below the range of the available historic record and is currently considered anomalous. This elevation will need to be confirmed during future monitoring efforts.

In general, the landfill indicator parameters are demonstrating fairly stable trends with respect to time at all monitoring well locations with some exceptions. Concentrations of alkalinity are generally stable with all concentrations quantified inside of the ODWQS limits except for BH-8 which was lower and BH-10 and BH-11 which were higher than the limits. Alkalinity concentrations at BH-11 are demonstrating an increasing trend until the spring 2022 sampling event. Concentrations of chloride, DOC, pH, TDS and copper are all generally stable, except for well BH-11 which is demonstrating a decreasing trend for these parameters. Chloride and TDS concentrations at BH-10 have also been demonstrating an increasing trend. Concentrations of nitrate are generally stable with the exception of BH-10 and BH-11 which are not

demonstrating any apparent trends. Aluminum concentrations are stable with the exception of BH-1 and BH-11 which are not demonstrating any apparent trends.

Concentrations of nitrate at BH-10 and BH-11 during 2019 and 2020 were significantly higher than the historical record at these locations and are interpreted to be anomalous. During the 2022 monitoring period, TDS concentrations had decreased slightly, but were still relatively high in comparison to the historical data sets. The nitrate concentrations have returned to levels consistent with the historical data sets. Further confirmation of these concentrations is required during future monitoring events.

Further monitoring investigations are required to confirm the trends observed during this monitoring period. Concentrations of all parameters quantified at newly installed wells BH12, BH13 and BH14 generally appear to be stable, with the exception of aluminum at BH-12; however, additional sampling events are required at these locations before a detailed trend analysis can be completed.

4.5 Groundwater Field Measurement Results

On May 10 and September 28, 2023, Pinchin collected groundwater monitoring parameters from each of the well locations using a YSI-556 water quality meter for measurement of field parameters. The field parameter measurements are provided in Tables 3 through 11.

A review of the field parameters for the project identified no significant concerns in the water quality during the monitoring events. The water quality at the Site monitoring locations did not change significantly between each of the monitoring locations, and the measured field parameters were within the normal variability associated with shallow groundwater monitoring systems.

4.6 Surface Water Quality Monitoring

4.6.1 The Provincial Water Quality Objectives (PWQO)

The PWQO are numerical and narrative criteria which serve as chemical and physical indicators representing satisfactory levels for surface water and groundwater where it discharges to the surface. The PWQO are levels which are protective of the water quality for all forms of aquatic life during their indefinite exposures to the water. The PWQO levels include protection for anthropogenic recreational water uses where there is a high potential of exposure and are based on public health and aesthetic considerations.

In general, the PWQO stated that the surface water quality of a water body shall be "free from contaminating levels of substances and materials attributable to human activities which in themselves, or in combination with other factors can: settle to form objectionable deposits; float as debris or scum or oil or other matter to form nuisances; product objectionable colour, odour, taste, or turbidity; injure, are toxic to or produce adverse physiological or behavioural responses in humans, animals, or plants; or enhance the production of undesirable aquatic life or result in the dominance of nuisance species".

4.6.2 Canadian Water Quality Guidelines (CWQG)

The CWQG were developed by the Canadian Council of Resources and Environment to provide basic scientific information about the effects of water quality parameters on uses in order to assess water quality issues and concerns and to establish water quality objectives for specific sites. The guidelines contain recommendations for chemical, physical, radiological and biological parameters necessary to protect and enhance designated uses of water. They apply only to inland surface waters and groundwater and not to estuarine and marine waterbodies. The rationale for each parameter is included to assist in the development of water quality objectives to suit local water conditions.

4.7 Surface Water Results

Pinchin collected surface water samples from all surface water monitoring locations during the spring and fall monitoring events in 2023. Surface water samples were collected to monitor the surface water for contaminants of concern as a compliance requirement. A summary of water quality monitoring data relative to the regulatory standards is presented in the attached Tables 14 through 16. Copies of the laboratory analytical reports are presented in Appendix V.

Surface water monitoring location SW-1, located within the creek to the south of the Site at the culvert on 25th and 26th Side Road, is considered representative of background water quality conditions and is characterized by naturally elevated concentrations of pH (low), chloride, phenols, iron, phosphorus, aluminum and cobalt. These parameter concentrations exceeded the PWQO and/or the CWQG during the 2023 sampling events which is consistent with the observations at this location throughout the historical monitoring record.

Surface water monitoring location SW-3, located in the pool of water at the northwest edge of the waste deposits, is considered to be representative of source surface water quality at the Site. Minor leachate impacts are observed at this location with PWQO and/or CWQG exceedances quantified in 2023 for phenols, iron, total phosphorus and boron. It should be noted SW-3 was observed to be dry during the fall 2023 sampling event and was not able to be sampled.

These impacts are interpreted to improve with distance from the landfill as lower concentrations are quantified at the downgradient monitoring location SW-2. PWQO and/or CWQG exceedances at downgradient surface water monitoring location SW2 include pH (low), iron, phosphorus and aluminum. These elevated concentrations are not interpreted to be landfill derived as exceedances of these parameters were also quantified at the background monitoring location (SW-1) indicating that they are naturally elevated.

Based on a review of the current and historic aluminum concentrations in comparison to total suspended solids (TSS), it is possible that the quantified aluminum concentrations are biased high due to a potential interference with TSS. To reduce the TSS concentrations in the samples and thereby minimize the potential interference of TSS, the PWQO requires that samples analyzed for aluminum be free of any clay. In the future, the component of the samples identified for the analysis of aluminum should be filtered prior to analysis in order to provide a clay free sample (as per the requirements of the PWQO).

4.8 Surface Water Trend Analysis

A series of time versus concentration graphs were developed to evaluate the concentrations of several select landfill indicator parameters (including alkalinity, chloride, DOC, pH, TDS, nitrate, aluminum and copper) at each surface water monitoring location for the Site. Current and historical surface water quality data was utilized to identify any apparent trends or inconsistencies in the water quality at the Site. The surface water time versus concentration graphs are provided in Appendix VII.

In general, the landfill indicator parameters are demonstrating stable trends with respect to time at all surface water monitoring locations with some exceptions. Concentrations of alkalinity, DOC, TDS and nitrate are generally stable except for SW-3 which has not demonstrated an apparent trend. Concentrations of chloride are increasing at SW-1 and SW-3. Concentrations of pH and aluminum do not appear to be indicative of an apparent trend, although SW-1 and SW-2 are consistently below the PWQO range for pH. Concentrations of aluminum are generally stable at SW-2 and SW-3, although concentrations at SW-1 quantified significantly higher values during the fall of 2020 and spring of 2021.

Further monitoring investigations are required to confirm the trends observed during this monitoring period.

4.9 Surface Water Field Measurement Results

On May 10 and September 28, 2023, Pinchin collected surface water monitoring parameters from each surface water monitoring location using a YSI-556 water quality meter for real-time in-situ measurement of field parameters. The field parameter measurements are provided in Tables 14 through 16.

A review of the field parameters for the project identified no significant concerns in the water quality during the monitoring event. The quality at the surface water monitoring locations did not change significantly between each of the monitoring locations. Surface water flow measurements were not obtained. SW-1 and SW-3 were both observed to be dry during the fall sampling event.

4.10 Leachate Characterization

The Site is an operating landfill with minor operational or maintenance being overseen by the Client. The Site does not have a leachate collection system whereby leachate quality monitoring and characterization is being completed. Currently, there is no groundwater monitoring well included in the existing monitoring well network at the Site that is situated within the active landfill area or which is considered representative of source leachate water quality. Therefore, leachate at the Site cannot be characterized at the time of preparation of this report.

4.11 Contaminant Attenuation Zone

A formal Contaminant Attenuation Zone (CAZ) has not been established for the Site. However, it should be noted that based on the current observed water quality data, landfill derived leachate impacts appear to attenuate prior to the property boundary.

4.12 Adequacy of the Monitoring Program

At this time, there is currently no formal monitoring program for the Site. Pinchin recommends continuation of sampling the groundwater and surface water two times per year (spring and fall) to establish any notable trends or impacts emanating from the landfill. The results of inspection and monitoring will be reported annually to the MECP. After that time and with the establishment of baseline data/source data leachate concentrations, a review of all data will then be used to establish the expected level of impact and the need and scope for long term monitoring.

During these sampling and reporting events, it is recommended that the monitoring well network be evaluated for adequacy and determine if there is a need for additional monitoring locations.

4.12.1 Monitoring Well Network Efficiency

Additional well installations were completed in April 2020 to supplement the existing groundwater monitoring well network at the Croft Waste Disposal Site. These additional wells (BH-12, BH-13 and BH-14) were installed downgradient of the Site to the north and northwest to allow for further water quality characterization in all downgradient directions and closer to the property boundary. Pinchin concludes that the current groundwater monitoring well network is considered adequate for evaluating the Croft Waste Disposal Site geological and hydrogeological characteristics downgradient of the Site.

4.12.2 Background Monitoring Well Efficiency

Based on a review of the groundwater contaminant data from BH-1, as well as the assumed groundwater flow direction, monitoring well BH-1 has been identified as a best-case background location. A review of the dataset (as provided on Table 3) from BH-1 did not identify elevated levels of common landfill-related

contaminant parameters, with the exception of hardness and alkalinity which are naturally lower than the ODWQS and DOC which is naturally elevated. At this time, monitoring well BH-1 is considered adequate for monitoring background groundwater quality.

4.13 Supplemental Monitoring: Sediment, Benthic and/or Toxicity Monitoring

No supplemental monitoring was completed as part of the 2023 monitoring program completed by Pinchin.

4.14 Assessment of the Need for Implementation of Contingency Measures

There are currently no set trigger levels designed for the Site. At this time, Pinchin does not recommend any need or implementation for contingency measures.

4.15 Waste Disposal Site Gas Impacts

At this time, no evidence has been documented to suggest that methane gas generation from the Site is a significant concern.

4.16 Effectiveness of Engineered Controls

With the exception of the intermittent landfill cover, there are no operational engineered controls in effect at the Site. The Client should continue to maintain the integrity of the landfill cover as per the CofA. Annual monitoring and inspections should continue to be completed to ensure regular maintenance is occurring on an as needed basis. At the time of the 2023 monitoring events, no significant damage or concerns were noted.

4.17 Control Systems Monitoring

Environmental control systems are designed, constructed and utilized at some waste disposal sites to reduce or increase an environmental variable to an acceptable level, or to maintain an environmental variable within an acceptable range in order to prevent a negative environmental outcome. Certain environmental control systems such as a leachate collection system or a methane gas collection system can provide the basis for operator intervention to bring about or maintain a desired condition to operate the landfill. The Site does not currently operate any control systems; therefore, no control system monitoring was completed as part of the 2023 monitoring program.

4.18 QA/QC Results

In order to provide confidence in the data obtained, a comprehensive QA/QC component was included in the monitoring program. The QA/QC procedures developed for this monitoring program are prepared in accordance with MECP Sampling Document and in most cases, exceed the minimum requirements.

Water quality samples collected by Pinchin were generated in accordance with acceptable procedures. No analytical hold times were exceeded for samples submitted for analyses and sample temperatures upon receipt at the project laboratory were below 10° Celsius.

One groundwater duplicate sample pair and one surface water duplicate sample pair were collected from the Site during the spring and fall sampling events and submitted for laboratory analysis of the full suite of analytical parameters. All duplicate data for 2023 are provided in Tables 17 and 18 for groundwater and surface water, respectively.

Sampling EventDuplicate Sample IDOriginal Sample IDSpringGW DUPBH-14SW DUPSW-2FallGW DUPBH-13SW DUPSW-2

The following table summarizes the duplicate pairs for 2023:

The calculated RPDs for the original and field duplicate groundwater sample has been compared to the performance standards considered acceptable by Pinchin (i.e., 50%). Each of the calculated groundwater RPDs met the corresponding performance standard with the exception of TSS and titanium in the groundwater duplicate pair during the spring, as well as copper in the surface water pair in the fall.

The analytical laboratory employed to perform the laboratory analyses (SGS) is accredited by the Standards Council of Canada/Canadian Association for Laboratory Accreditation in accordance with ISO/IEC 17025:1999 – "*General Requirements for the Competence of Testing and Calibration Laboratories*" for the tested parameters and has met the standards for proficiency testing developed by the Standards Council of Canada for parameters set out in the Soil, Ground Water and Sediment Standards.

Sample analysis dates provided on the laboratory analytical reports issued by SGS indicate that all sample analyses were performed within the required sample/extract hold times as indicated by the dates presented in columns for each sample parameter on the analytical report. The laboratory minimum detection limits were reported to be at or lower than the required MECP reporting detection limits for the parameters analyzed. A comparison of the internal laboratory duplicate samples indicates that all samples and the respective duplicates are within acceptable limits.

Upon review of the QA/QC results for spring and fall sampling programs, Pinchin has not identified any significant concerns that would warrant the invalidation of any of the field or laboratory data; therefore, considers the data generated as part of this program to be reliable.

5.0 CONCLUSIONS

Based on the work completed, the following is a summary of the activities and findings of the 2023 water quality monitoring program:

- Groundwater samples were collected from all monitoring wells at the Site on May 10 and September 28, 2023. All groundwater samples were submitted for laboratory analysis of parameters identified in the previous monitoring reports. The groundwater quality was assessed based on the ODWQS and Guideline B-7;
- Surface water samples were collected from all monitoring locations on May 10 and September 28, 2023, with the exception of SW-1 and SW-3 in the fall of 2023 as they was observed to be dry at the time. All surface water samples were submitted for laboratory analysis of parameters identified in the previous monitoring reports. Surface water quality was assessed based on the PWQO and CWQG;
- During the spring monitoring event on May 10, 2023, the depth to groundwater was observed to range from 292.89 metres above sea level (masl) at BH-1 to 288.47 masl at DP-7. During the fall monitoring event on September 28, 2023, the depth to groundwater was observed to range from 292.18 masl at BH-1 to 2987.98 masl at BH-12. Groundwater flow at the Site is interpreted to flow towards the north;
- All reported concentrations in the groundwater samples submitted for analysis satisfied the respective ODWQS parameters with the exception the following:
 - Hardness (high) at BH-1, BH-8, BH-9, BH-10 and BH-14;
 - Hardness (low) at BH1, BH-8, BH-11, BH-12 and BH-13;
 - TDS at BH-10;
 - Alkalinity (low) at BH-8 and BH-13;
 - Chloride at BH-10;
 - Sodium at BH-10;
 - DOC at BH-1, BH-9, BH-10 and BH-11;
 - Iron at BH-1, BH-9, BH-11, BH-12, BH-13 and BH-14;
 - Manganese at BH-1, BH-9, BH-10, BH-11, BH-12, BH-13 and BH-14;
 - Turbidity at BH-1, BH-8, BH-9, BH-10, BH-11, BH-12, BH-13 and BH-14; and
 - Aluminum at BH-1, BH-8, BH-9, BH-11 and BH-13.

- All reported concentrations in the groundwater samples collected from the downgradient monitoring wells met the applicable Guideline B-7 criteria for all parameters analyzed with the exception of the following:
 - Chloride at BH-10 during the spring and fall;
 - Sodium at BH-10 during the spring and fall;
 - Alkalinity (high) at BH-10 during the spring and fall;
 - Alkalinity (low) at BH-8 and BH-13 during the spring; and
 - TDS at BH-9 and BH-10 during the spring and fall.
- The current 2023 groundwater monitoring data indicates that the Site is continuing to effectively operate as designed, as a natural attenuation type facility, with any landfill derived groundwater impacts attenuated to acceptable levels prior to the downgradient property boundaries;
- All reported concentrations in the surface water samples submitted for analysis satisfied the respective PWQO and/or CWQG parameters with the exception of the following:
 - pH (low) at SW-1 and SW-2;
 - Chloride at SW-1;
 - Phenols at SW-1 and SW-3;
 - Iron at SW-1, SW-2 and SW-3;
 - Total phosphorous at SW-1, SW-2 and SW-3;
 - Aluminum at SW-1 and SW-2;
 - Boron at SW-3;
 - Cobalt at SW-1; and
 - Zinc at SW-1.

Based on the results obtained from the existing groundwater monitoring wells and surface water monitoring locations, Pinchin has not identified any significant landfill related impacts at the Site. Elevated concentration parameters within the groundwater samples analyzed at the furthest downgradient monitoring locations (i.e. BH-8, BH-9, BH-12, BH-13 and BH-14) are likely attributed to either naturally occurring conditions within the shallow unconfined aquifer on-site or from temperate impacts from leachate sourced from the waste deposits at the Site. All exceedances of the Guideline B-7 RUC at the downgradient wells considered representative of the property boundary are related to operational guidelines and/or aesthetic objectives associated with drinking water systems set by the ODWQS and are

not considered to be an immediate significant human health or environmental concern originating from the Site. These concentrations are interpreted to attenuate with further distance from the Site. In summary, the current 2023 groundwater monitoring data indicates that the Site is continuing to effectively operate as designed, as a natural attenuation type facility, with any landfill derived groundwater impacts attenuated to acceptable levels prior to the downgradient property boundaries.

6.0 **RECOMMENDATIONS**

Based on a review of the existing dataset and regulatory requirements to date, Pinchin recommends the following:

- Continue with routine monitoring of all the available groundwater monitoring wells and surface water monitoring locations. Groundwater and surface water monitoring shall be completed with analyses for the parameters identified in the historical monitoring record. It is recommended that groundwater and surface water monitoring be completed during the spring and late fall to generate a baseline data set, to evaluate trends and to determine the need and scope of a long-term monitoring program for the Site. Considering the dataset completed thus far, it is Pinchin's opinion that sampling should continue in 2024 before the adequacy of the monitoring program can be fully evaluated;
- The casing lid on monitoring well BH-11 should be repaired and given a PVC cap;
- The Client should continue to ensure that the requirements as specified in the CofA are complied with; and
- In the future, the component of the surface water samples identified for the analysis of aluminum should be filtered prior to analysis, in order to provide a clay free sample (as per the requirements of the PWQO).

7.0 MONITORING AND SCREENING CHECKLIST

In accordance with the MECP Landfill Standards, the Monitoring and Screening Checklist for the Site completed by the Pinchin CEP is completed and provided in Appendix VIII.

8.0 DISCLAIMER

This Water Quality Monitoring Program was performed for the Corporation of the Municipality of Magnetawan (Client) in order to investigate the environmental condition of the groundwater and surface water at the Croft Waste Disposal Site (Site). The term recognized environmental condition means the presence or likely presence of any hazardous substance on a property under conditions that indicate an existing release, past release, or a material threat of a release of a hazardous substance into structures

on the property or into the ground, groundwater, or surface water of the property. This Water Quality Monitoring Program does not quantify the extent of the extent of the current and/or recognized environmental condition or the cost of any remediation.

Conclusions derived are specific to the immediate area of study and cannot be extrapolated extensively away from sample locations. Samples have been analyzed for a limited number of contaminants that are expected to be present at the Site, and the absence of information relating to a specific contaminant does not indicate that it is not present.

No environmental site assessment can wholly eliminate uncertainty regarding the potential for recognized environmental conditions on a property. Performance of this Water Quality Monitoring Program to the standards established by Pinchin is intended to reduce, but not eliminate uncertainty regarding the potential for recognized environmental conditions on the Site and recognizes reasonable limits on time and cost.

This Water Quality Monitoring Program was performed in general compliance with currently acceptable practices for environmental site investigations and specific Client requests as applicable to this Site.

This report was prepared for the exclusive use of the Client, subject to the conditions and limitations contained within the duly authorized work plan. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, is the responsibility of the third parties. If additional parties require reliance on this report, written authorization from Pinchin will be required. Pinchin disclaims responsibility of consequential financial effects on transactions or property values, or requirements for follow-up actions and costs. No other warranties are implied or expressed. Furthermore, this report should not be construed as legal advice.

Pinchin will not be responsible for any consequential or indirect damages. Pinchin will only be held liable for damages resulting from the negligence of Pinchin. Pinchin will not be liable for any losses or damage if the Client has failed, within a period of two years following the date upon which the claim is discovered within the meaning of the Limitations Act, 2002 (Ontario), to commence legal proceedings against Pinchin to recover such losses or damage.

Pinchin makes no other representations whatsoever, including those concerning the legal significance of its findings, or as to other legal matters touched on in this report, including, but not limited to ownership of any property, or the application of any law to the facts set forth herein. With respect to regulatory compliance issues, regulatory statutes are subject to interpretation and these interpretations may change over time.

\\pin-sud-fs01\job\225000s\0225335.000 magnetawan,chapmansite,edr,landfill\0225335.007 magnetawan,chapmansite,edr,amr\deliverables\reports\croft 2023 amr\225335.007 2023 amr, croft wds magnetawan.doc

Template: Groundwater Monitoring Template - Oil and Gas, EDR, May 28, 2019

APPENDIX I Figures

APPENDIX II Borehole Logs

			Log	of B	oreh	ole:	BH	12		
			Project	#: 2253	335.005			Lo	gged By: TG	
	DI	NCHIN	Project	: Groun	dwater	Monit	oring W	ell Installat	ion	
		испін	Client:	The Co	rporatio	n of th	ne Muni	cipality of N	lagnetawan	
			Locatio	n: Crof	t Waste	Dispo	osal Site	e, Magneta	wan, Ontario	
			Drill Da	te: Apri	I 21, 20	20	I		eet: 1 of 1	
		SUBSURFACE PR	OFILE	1				S	AMPLE	
Depth	Symbol	Description		Elevation (m)	Monitoring		Recovery (%)	Sample ID	Soil Vapour Concentration (ppm) CGI/PID	Laboratory Analysis
ft m		One word Outford		0.00	T	Т				
0+0 1++ 2+++ 3+++ 4+++ 5++		Ground Surface Gneissic Bedrock Grey to black metamorphic bedrock quartzite and biotite with garnet min ization, massive	, some leral,	0.00	Riser	Bentonite	100	RC1	_	
6 7 8 8 9 10 10 10 10						Silica Sand 🚽	100	RC2	_	
11 12 13 14 14 15					Screen	S	100	RC3		
16 17 17 18 19 19 20 6				-6.10			100	RC4		
20		End of Borehole								
22 23 24 24 25										
Con	tractor	Marathon Underground Cons	structors Co	orporati	on	Grad	e Eleva	tion: 288.8	96 mREL	
Drilli	ing Met	thod: HQ Diamond Core Bit				Top a	of Casin	ng Elevatio	n: 289.866 mF	REL
	-	g Size: 5.08 cm				-		-	593608mE 50	

			Log	of B	oreho	le:	BH	13		
			Project	#: 2253	335.005			Lo	gged By: TG	
	DI	NCHIN	Project	: Groun	dwater M	onite	oring W	/ell Installat	ion	
			Client:	The Co	rporation	of th	ne Muni	cipality of N	lagnetawan	
			Locatio	n: Crof	t Waste D)ispo	osal Site	e, Magnetav	wan, Ontario	
				te: Apri	il 22, 2020)			eet: 1 of 1	
		SUBSURFACE PR	ROFILE					S	AMPLE	
Depth	Symbol	Description		Elevation (m)	Monitoring Well Details		Recovery (%)	Sample ID	Soil Vapour Concentration (ppm) CGI/PID	Laboratory Analysis
ft m		Created Stuffage		0.00						
0+0 1+++ 2+++ 3++++1 4+++++ 5++		Ground Surface Gneissic Bedrock Grey to black metamorphic bedrock quartzite and biotite with garnet mir ization, massive	k, some neral,	0.00	Riser	Bentonite	100	RC1	-	
6 7 7 8 9 10 10 10						Silica Sand	100	RC2	_	
11 12 13 14 14 15 15					Screen	Si	100	RC3		
16 17 18 18 19 20 6				-6.10			100	RC4		
20 21 22 23 		End of Borehole								
Con	tractor:	Marathon Underground Cons	structors Co	orporati	on G	rad	e Eleva	tion: 290.8	21 mREL	
Drilli	ing Met	thod: HQ Diamond Core Bit			Тс	оро	of Casir	ng Elevatio	n: 291.566 mF	REL
Well	Casing	g Size: 5.08 cm				-		-	593714 mE 50	

			Log	of B	oreh	ole	: BH	14		
			Project	#: 2253	335.00	5		Lo	gged By: TG	
	DI	NCHIN	Project	Groun	dwater	Monit	oring W	ell Installat	ion	
			Client:	The Co	rporatio	on of th	ne Muni	cipality of N	lagnetawan	
							osal Site	-	wan, Ontario	
			Drill Da	<i>te:</i> Apri	1 22, 20	020			eet: 1 of 1	
		SUBSURFACE PR	OFILE					S	AMPLE	
Depth	Symbol	Description		Elevation (m)	Monitoring	Well Details	Recovery (%)	Sample ID	Soil Vapour Concentration (ppm) CGI/PID	Laboratory Analysis
ft m				0.00	Т	_				
0 + 0 1 + 1 2 + 1 3 + 1 4 + + 5 + +		Ground Surface Gneissic Bedrock Grey to black metamorphic bedrock quartzite and biotite with garnet min ization, massive	, some eral,	0.00	Riser	Bentonite	100	RC1		
6 7 7 8 9 10 10 10						Silica Sand	100	RC2	_	
11 12 13 14 14 15 15					Screen	S	100	RC3		
16 17 17 18 19 19 				-6.10			100	RC4		
20 - 0 21 - 1		End of Borehole								
227 237 24 25										
Con	tractor	Marathon Underground Cons	tructors Co	orporati	on	Grad	e Eleva	tion: 289.4	16 mREL	
		t hod: HQ Diamond Core Bit		-					n: 290.259 mF	2FI
	-	g Size: 5.08 cm				-		-	593733 mE 50	

BORE	HC	DLE LOG	PROJECT:	603	364		_	1	BOR	EH	OLE	: D	P7	1 0	of 1
Croft Lan	dfil	vestigation ll nship of Magnetawan	Northing: Easting: Methodolog Contractor:	y: I	land	N	/A /A ger /A	-1		GE	D BY		2015 TLC 289.		SL
DEPTH (m) (mASL)	STRATIGRAPHY	STRATIGRAPHIC D	ESCRIPTION	MONITOR DETAILS & NUMBER	NUMBER	TYPE.	UE		% REC	% RQD		(%	ERY) 5100	 RQ (%	
0.3 289.0 0.5 288.8 1 1.7 287.6		TOPSOIL Dark brown to black, silty topsoil, to occasional rootlets, moist becoming 0.2 m. SAND Brown to grey fine to medium sand silt, saturated. -Changing to a silty fine sand with and cobles below about 0.4 m. SANDY SILT TILL Brown to grey silty sand to sandy so observed, trace fine gravel, moist to -Hand auger refusal in dense till at 1. Borehole teminated at 1.72 m in ass point refusal on assumed bedrock.	, trace fine gravel, trace occasional fine gravel ilt till, brown oxidation o wet, dense. about 0.8 m		1 2 3 4	M	5								

Printed: Jan 15, 16 File Location:

		DLE LOG	PROJECT: Northing:	603	3643	N//	4		DAT	1 100	-	: D	2015	_	1 of 1
Croft La	ndfi		Easting: Methodolog Contractor:	y: F	Iand	N/A Auge N/A	er	- 1	.0G	GEI	D BY	Z	TLC	/SRB 54 m	ASL
DEPTH (m) (mASL)	STRATIGRAPHY	STRATIGRAPHIC	DESCRIPTION	MONITOR DETAILS & NUMBER	NUMBER	TYPE	N VALUE	% WATER	% REC	% RQD		(%)	ERY) 5100		RQD (%)
0.2 290.3 1 - 1.4 289.1		TOPSOIL Dark brown to black, silty topsoil, occasional rootlets, moist. SAND Brown to grey fine to medium san silt, wet. -Becoming saturated below about -Changing to a silty fine sand with about 0.5 m. -Hand auger refusal in dense soil a Borehole teminated at 1.41 m in a	d, trace fine gravel, trace 0.4 m. 1 trace fine gravel below at about 0.9 m		1 2 3 4 5 6 7	X GS GS GS GS GS GS GS						507			
		drive point refusal on assumed bed	поск.												
Printec	l:Ja	an 15, 16													co

.

DORL	HC	DLE LOG	PROJECT:	603	3643			B	OR	EH	OLE	C: [OP9		1	of 1
Croft La	ndfil	ivestigation ll mship of Magnetawan	Northing: Easting: Methodology Contractor:	/: H	Iand /	N/A N/A Auge N/A	r	L		GE	D B	Y		C/SI	RB m A	SL
DEPTH (m) (mASL)	STRATIGRAPHY	STRATIGRAPHIC D	ESCRIPTION	MONITOR DETAILS & NUMBER	NUMBER		N VALUE W	% WATER	% REC	% RQD		(%	1 1		RQ (%	6)
100.00 - 0.000		TOPSOIL Dark brown to black, silty topsoil, to occasional rootlets, saturated. SAND Grey fine to medium sand, trace fin saturated. -Changing to a medium sand with the about 0.7 m. -Grey silty sand noted below about -Hand auger refusal in dense soil at Borehole teminated at 1.27 m in ass	race to some sand, e gravel, trace silt, race fine sand below 0.9 m. about 1.0 m.		IN 1 2 3 4 5 34 6	GS GS GS GS GS GS	N	96	019	96					5 50 -	75 100

BOREH	IOLE LOG	PROJECT:	603	3643	4	_	B	OR	EHO	OLE:	BH8	1	of 1
Croft Land	e Investigation dfill ownship of Magnetawan	Northing: Easting: Methodolog Contractor:	y: Au	ger/C	N// N// Corin rillin	4	- 1		GEI	DBY	22, 2015 SRB V 291.		NOT.
		Contractor:	por				_	_		DELE	V 291.	55 m A	42L
DEPTH (m) mASL)	STRATIGRAPHIC I	DESCRIPTION	MONITOR DETAILS & NUMBER	NUMBER	TYPE	VALUE	WATER	REC	RQD	22222	OVERY %)		QD %)
0.2	TOPSOIL Dark brown, silty topsoil, trace to moist. SAND Brown fine to medium sand, trace medium gravel, moist.]		1	SS	9	9/9	9/9	9/9		0 75 100	25 50	75 100
				2	SS	8/							
1.0 1 90.6 1	GNEISSIC BEDROCK Grey to black metamorphic bedroc biotite with garnet mineralization,		HHH	3	HQ	0.23n	n	100	100		Î		
2				4	HQ			100	100				
3				5	HQ HQ			100 100	100		-		•
-													
5				-	HQ			100	92				
5.7	Borehole terminated at 5.72 m in C	niessic Bedrock.					-		-	++			-
5.9	Solution communed at 5.72 mm	Stateste Stateste											
Printed:	Jan 15, 16			-		-	-	-	-			EC	-

DEPTH (m) (mASL)	estigation ship of Magnetawan STRATIGRAPHIC DESCF SAND Brown fine to medium sand, some fine grav	Northing: Easting: Methodolog Contractor: RIPTION	MONITOR DETAILS & NUMBER	NUMBER	S	AMD	GRO	GGE	D BY D ELE		52 m ASI
	SAND	RIPTION	MONITOR DETAILS & NUMBER	BER FRVAL	TUN	U.C.			DEC		
				NUM	TYPE		% WATER % REC	% RQD	(OVERY %) 0 75 100	RQD (%) 25 50 75
	-0.15 m layer of brown to grey silty fine sat at about 0.2 m. -0.15 m layer of medium to coarse sand, so saturated, at bedrock contact.	nd, trace gravel		2	SS	4		-			
	GNEISSIC BEDROCK Grey to black metamorphic bedrock, some biotite with garnet mineralization, massive.				HQ		10) 100 100			
3.9 285.6	Borehole terminated at 3.89 m in Gniessic I	Bedrock.			HQ			0 100		-	

12.30000000	-	DLE LOG	PROJECT: Northing:	603	3643	4 N//	4	-	-	1	-	BH10	1 of 1
Croft La	ndfi	nvestigation 11 /nship of Magnetawan	Easting: Methodology Contractor:	: Au	ger/C ntil di	N//	4	- 1		GE	D BY		
	_	and point and germanian			1		SAM				1		
DEPTH (m) (mASL)	STRATIGRAPHY	STRATIGRAPHIC DES	CRIPTION	MONITOR DETAILS & NUMBER	NUMBER	TYPE	N VALUE	% WATER	% REC	% RQD	11	COVER (%) 50 75 100	(%)
0.2 290.7 1 -	5 H	TOPSOIL Dark brown, silty topsoil, trace to some moist. SAND Brown silty sand, trace fine gravel, moi -Becoming fine sand and saturated belo -Changing to a fine to medium sand belo	st. w about 0.76 m		1	SS SS SS	0 23 21						23 30 73 10
2 - 2.1 288.7 3 -		<u>GNEISSIC BEDROCK</u> Grey to black metamorphic bedrock, sor biotite with garnet mineralization, massi			5	HQ			100 100			80	
4.1 ⁴ ·		Borehole terminated at 4.06 m in Gniess	ic Bedrock.										
Printec	1: Ja	an 15, 16											AECO/

Subsurface Ir Croft Landfi Client: Tow DEPTH (m) (mASL)		Northing: Easting: Methodolog Contractor:		ger/C ntil dr	N/A N/A	A	DA' LO			24, 2015 JNB	
Client: Tow	nship of Magnetawan			ger/C ntil dr	oring	or i					
CEPTH (mASL)	STRATIGRAPHIC DES	SCRIPTION		_	rilling	g					74 m ASL
DEPTH (m) (mASL) (((()	STRATIGRAPHIC DES	CRIPTION				AMI	PLE		1		
			MONITOR DETAILS & NUMBER	NUMBER		VALUE	% WATER % REC		(9	VERY %)	RQD (%) 25 50 75 10
1 1 1 1 1 1 1 1 1 1 1 1 1 1	GNEISSIC BEDROCK Grey to black metamorphic bedrock, so biotite with garnet mineralization, mass Borehole terminated at 4.39 m in Gnies	sive.		2	HQ		10	0		73100	

APPENDIX III Summary Tables

TABLE 1 Groundwater Monitoring Location Data Croft Waste Disposal Site Magnetawan , Ontario

mber	(ЛЛЛЛ)	ırface (masl)	ation)	TOC und (m)	evel ment (m)	Depth (m)	to ater ;)	Water ation)	U	M Coordina	tes	
Well ID Number	Date (dd/mm/yyyy)	Ground Surface Elevation (masl)	TOC Elevation (masl)	Height of TOC from Ground Surface (m)	Water Level Measurement from TOC (m)	Total Well Depth from TOC (m)	Depth to Groundwater (mbgs)	Calculated Water Level Elevation (masl)	Zone	Northing (m)	Easting (m)	Comments
	8-May-14			-	0.93	-	-	292.89				-
	30-Oct-14 9-Jun-15			-	0.91	-	-	292.91				-
	22-Jun-15			-	-	-	-	-				-
	23-Jun-15			-	-	-	-	-				-
	6-Aug-15			-	1.78	-	-	292.04				-
	22-Oct-15 13-Oct-16			-	- 1.66	-	-	- 292.16				-
	18-May-17			-	0.97	-	-	292.85				-
	25-Oct-17			-	0.92	-	-	292.90				-
BH1	2-May-18 17-Oct-18	NA	293.82	-	0.84 1.06	-	-	292.98 292.76	17T	5058316	593651	-
	17-Oct-18 11-Jun-19			- 0.72	0.95	- 4.34	- 0.23	292.76				-
	25-Sep-19			0.65	1.42	4.29	0.77	292.40				-
	2-Jun-20			0.65	1.12	4.29	0.47	292.70				-
	1-Oct-20			0.66	1.02	3.47	0.36	292.80				Orange, odour.
	12-May-21 7-Oct-21			0.72 0.72	1.08 0.97	4.40 4.38	0.36 0.25	292.74 292.85				-
	4-May-22			-	-	-	-	-				No Data
	18-Oct-22			0.72	1.18	4.39	0.46	292.64				-
	10-May-23			0.70	0.93	4.39	0.23	292.89				-
	28-Sep-23 8-May-14			0.70	1.64	3.63	0.94 -	292.18				Clear, no odour, good well condition
	30-Oct-14			-	-	-	-	-				-
	9-Jun-15			-	-	-	-	-				-
	22-Jun-15			-	2.24	-	-	290.23				-
	23-Jun-15 6-Aug-15			-	- 4.04	-	-	- 288.43				-
	22-Oct-15			-	4.55	-	-	287.92				-
	13-Oct-16			-	4.20	-	-	288.27				-
	18-May-17			-	2.36	-	-	290.11				-
	25-Oct-17 2-May-18			-	2.43 1.69	-	-	290.04 290.78				-
BH8	17-Oct-18	291.63	292.47	-	2.90	-	-	289.57	17T	5058508	593544	-
	11-Jun-19			0.83	2.59	6.52	1.76	289.88				-
	25-Sep-19 2-Jun-20			0.75 0.76	3.95 2.75	6.45 6.54	3.20 1.99	288.52 289.72				Partial sample Purged dry.
	1-Oct-20			0.70	2.79	6.41	1.95	289.68				-
	12-May-21			0.82	2.44	6.51	1.62	290.03				Purged dry.
	7-Oct-21			0.82	2.35	6.51	1.53	290.12				Purged dry.
	4-May-22 18-Oct-22			0.82	2.3 4	6.52 6.50	1.48 3.18	290.17 288.47				-
	10-May-23			0.82	2.33	6.36	1.51	200.47				-
	28-Sep-23			0.82	3.93	6.48	3.11	288.54				Cloudy, no odour, good well condition
	8-May-14			-	-	-	-	-				-
	30-Oct-14 9-Jun-15			-	-	-	-	-				-
	22-Jun-15			-	1.84	-	-	288.60				-
	23-Jun-15			-	-	-	-	-				-
	6-Aug-15 22-Oct-15			-	1.98 1.83	-	-	288.46 288.61				-
	22-Oct-15 13-Oct-16			-	1.83	-	-	288.61				-
	18-May-17			-	1.18	-	-	289.26				-
	25-Oct-17			-	1.18	-	-	289.26]
BH9	2-May-18 17-Oct-18	289.52	290.44	-	0.95 1.41	-	-	289.49 289.03	17T	5058495	593597	-
	11-Jun-19			- 0.99	1.41	- 4.61	- 0.11	289.34				
	25-Sep-19			0.93	1.42	4.62	0.49	289.02				-
	2-Jun-20			1.00	1.33	4.70	0.33	289.11				Purged dry.
1	1-Oct-20 12-May-21			0.81 0.80	1.27 1.3	4.60	0.46 0.5	289.17 289.14				
1	7-Oct-21			0.80	1.3	4.64	0.5	289.32				- Purged dry.
	4-May-22			1.00	1.1	4.63	0.1	289.34				
	18-Oct-22			0.90	1.31	4.61	0.41	289.13				-
	10-May-23			0.96	0.98	4.68	0.02	289.46				
	28-Sep-23			0.96	1.9	4.69	0.94	288.54				Orange, no odour, good well condition

TABLE 1 Groundwater Monitoring Location Data Croft Waste Disposal Site Magnetawan , Ontario

BAM9:4 3.04:01 2.04:01 2.04:01 2.04:01 1.04:01 1.04:01 1.04:01 2.04:01 2.04:01 2.04:01 1.04:0 1	mber	(ЛЛЛЛ)	irface (masi)	ation)	TOC und (m)	evel ment (m)	Depth (m)	to ater ;)	Water ation)	וט	M Coordina	tes	
39-06-14	Well ID Number	Date (dd/mm/yyyy)	Ground Surface Elevation (masl)	TOC Elevation (masl)	Height of TOC from Ground Surface (m)	Water Level Measurement from TOC (m)	Total Well Depth from TOC (m)	Depth to Groundwater (mbgs)	Calculated Water Level Elevation (masl)	Zone	Northing (m)	Easting (m)	Comments
9-Juni 15 23-Juni 15 6-Aug 15 22-204 15 22-204 15 10-469 17 22-204 15 10-202 10 17-204 18 17-204 18 17-						-							-
22-Juni15 3-4-upi15 2-20-15 130:0-16 130:0-					-	-							-
8-Aug-15 22-0-11-1 13-02-16 13-02-16 13-02-16 13-02-16 13-02-16 13-02-16 13-02-16 13-02-16 13-02-16 13-02-16 23-04-17 23-04-18 23-04-17 23-04-18 23-04-19 23-04-18 23-04-													-
12-06:16 18-Muy:17 25-06:17 2446:12 20.87 2446:12 20.87 2446:14 1					-		-	-					-
13-0c+16 13-0c+16 1		-											-
18-May-17 24.69-18 24.69-18 24.69-18 12-May-12 12-May													-
BH0 24May-16 1110 24May-16 1110 291.83 - 0.79 - 291.04 2005 1710 558.44 558.44 558.44 558.44 558.44 558.44 558.44 558.44 558.44 558.44 558.44 -					-		-	-					-
BH10 17-0c+18 208.07 224.07 224.07 200.07 200.07 200.08 177 505844 50371 2-3.0-20 0.83 1.98 4.83 0.36 280.64 20.7 200.08 200.7 200.08 200.7 200.08 200.7 200.08 200.7 200.08 200.7 200.08 200.7 200.08 200.7 200.08 200.7 200.08 200.08 200.08 200.08 200.08 200.08 200.08 200.02 200.08 200.02 200.08 200.02 200.08 200.02 200.08 200.02 200.07 200.02 200.07 200.02 200.07 200.02 200.07 200.02<													-
11-Jun-19 2-Jun-20 1-0c	BH10		290.87	291.83						17T	5058444	593731	-
25-Sep-19 28.3 1.19 4.83 0.38 290.64 1-00-20 0.81 1.00 4.91 290.85 1.7 200.74 200.77 200.74 200.74 2													-
1:0ct-20 0.92 0.88 4.87 -0.04 290.95 1:2:May-21 0.92 0.9 4.87 -0.02 290.85 1:6:0ct-22 0.9 4.87 -0.02 290.85 1:6:0ct-22 0.94 4.89 0.02 290.87 1:6:0ct-22 0.94 0.89 4.90					0.83	1.19	4.83	0.36	290.64				-
12.May.21 4.May.22 19.Ox22 19.Ox22 10.May.23 0.92 0.99 0.97 0.99 0.99 0.97 0.99 0.97 0.99 0.97 0.99 0.97 0.99 0.97 0.97													
1 0.92 0.9 4.87 -0.02 290.93 16-0dr.22 0.84 0.90 -0.04 290.85													-
4-May-22 0.92 0.88 4.90 0.04 290.97 10-May-23 0.91 0.88 0.02 290.97 0.91 0.92 0.93 0.92 290.97 10-May-23 0.91 1.54 4.88 0.02 290.29 0er. 90.90.20		-											-
19-Ort-22 0.94 0.98 4.88 0.02 290.84 19-May-23 0.91 0.94 0.90 0.02 290.94 28-Sep-23 0.91 0.94 0.90 0.02 290.94 19-May-16 0.91 0.94 0.90 0.02 290.94 19-May-17 0.91 1.54 4.88 0.03 290.29 23-Jun-16 - - - - - 23-Jun-16 - - - - - 24-May-17 - - - - - - 24-May-17 - 10.5 - 290.05 - 290.16 19-May-18 - 10.5 - 290.16 -													-
Image: Construction of the construction of					0.94	0.96	4.88	0.02	290.87				-
8-May:14 9-Jun-16 22-Jun-16 22-Jun-16 13-Oci-14 13-Oci-16 13-Oci-16 13-Oci-16 14-May:17 25-Oci-17 12-Coi-18 17-Oci-18 0-7 - </td <td></td> <td>-</td> <td></td> <td>-</td>		-											-
30-Oct-14 22-Jun-16 22-Jun-16 3-2-Oct-17 3-Oct-16 13-Oct-16 13-Oct-16 13-Oct-16 13-Oct-16 13-Oct-16 13-Oct-16 13-Oct-16 13-Oct-16 13-Oct-16 13-Oct-16 13-Oct-16 13-Oct-16 13-Oct-16 11-Jun-19 2-Jun-20 12-Jun-20 12-Jun-20 12-Jun-20 12-Jun-20 12-Jun-20 12-Jun-20 12-Jun-20 12-Jun-20 12-Jun-20 12-Jun-20 12-Jun-20 12-Jun-20 12-Jun-20 12-Jun-20 12-Jun-20 12-Jun-20 12-Jun-20 12-Jun-16 12-J													Clear, no odour, good well condition
9-Jun-16 23-Jun-15 3-2.0t-15 13-Oct-16 13-Oct-16 13-Oct-16 13-Oct-16 14-May-17 25-Oct-17 1-Oct-18 1-Oct-20 1-Oct-20 12-May-21 1-Oct-20 12-May-21 0-0-20 12-May-21 0-0-20 0-0-20 0-0-20 29.74 29.74 29.74 29.74 29.74 29.74 29.74 29.74 29.74 29.74 29.74 29.74 1.01 - 290.15 -		-											-
					-	-	-	-	-				-
6-Aug-15 22-Oct-16 13-Oct-16 18-May-17 2-May-28 11-Jun-19 2-Sape-19 2-Sape-12 2-Jun-20 1-Oct-20 12-May-21 0-P-7 290.74 282.61 - 2.24.6 - 2.200.60 - 1.1 - 2.201.60 - - 2.201.60 - - 2.201.60 - - 2.201.70 - 1.01 - 2.201.70 - 2.201.70 - 1.07 4.34 0.33 2.201.70 - 1.07 1.00 - 2.201.70 - 2.201.70 - - 2.201.70 - 1.07 1.00 - 2.201.70 - 2.201.70 - - 2.201.70 - - 2.201.70 - 1.07 1.08 4.82 0.50 2.201.30 - -					-	-	-	-	-				-
13-0c1-6 13-0c1-6 13-0c1-6 13-0c1-6 13-0c1-7 290.74 290.74 292.61 - - 290.76 - 1.01 - 291.36 - - 1.77 5059507 533713 - - - - - 291.36 - - - 291.36 - - - 291.51 -													-
13-0ct-16 19-May-17 25-0ct-17 2-May-18 25-0ct-17 2-May-18 11-Jun-19 2-Jun-20 1-0ct-20 1-2-May-21 2-Jun-20 2-Jun-16		-											-
BH11 25-Oct.17 2-May-18 290.74 1.10 .1.00					-		-	-					-
BH11 2:May:18 17:Oct:18 17:Jun-19 2:5:sp-19 2:		-			-		-	-					-
BH11 17.Oct:48 290.74 292.61 . 1.10 . . 291.51 17T 5059507 593713 . 25-Sep-19 2-Jun-20 . 0.66 1.19 4.72 0.63 291.42 .													-
11-Jun-19 25-Sep-19 2-Jun-20 1-Oct-20 1-Oct-20 1-Oct-20 1-Oct-20 1-Oct-20 1-Oct-20 1-Oct-20 1-Oct-20 1-Oct-20 2-Sep-23 0.75 0.74 1.07 1.07 4.81 0.33 2.91.52 0.75 291.42 2.91.11 0.76 4-May-22 1-Oct-21 1-Oct-20 1-Oct-20 2-Sep-23 0.75 0.76 1.28 4.82 0.75 0.68 2.92 291.36 0.75 0.76 0.52 291.36 0.75 0.75 1.28 4.82 0.50 291.36 0.75 0.76 0.76 0.76 0.76 1.80 0.75 1.28 4.76 0.52 291.36 0.75 0.76<	BH11		290.74	292.61						17T	5059507	593713	-
2-Jun-20 1-Oct-2					0.74			0.33					-
1-Oct-20 12-May-21 7-Oct-21 4-May-22 0.75 1.08 4.82 0.03 291.53 7-Oct-21 4-May-22 0.75 1.28 4.82 0.63 291.23 18-Oct-22 10-May-23 0.75 1.28 4.82 0.52 291.34 0.75 1.28 4.76 0.53 291.57 - 0.75 1.28 4.76 0.53 291.31 0.75 1.28 4.76 0.52 291.31 0.75 1.28 4.76 0.52 291.31 0.75 1.28 4.76 0.52 291.31 0.75 1.20 - - - 9.00-15 - - - - 9.00-16 - - - - 2.3.0u-15 - 1.88 - - 289.76 1.28 1.93 0.07 288.49 - - 289.76 1.24 1.28 1.93 0.07 288.49 - -		-											
12-May-21 7-Oct-21 4-May-22 10-May-23 0.75 1.38 4.82 0.63 291.23 291.36 4-May-22 10-May-23 0.75 1.25 4.82 0.50 291.36 0.75 1.27 4.81 0.52 291.36 0.75 1.28 4.76 0.53 291.37 10-May-23 0.75 1.28 4.76 0.53 291.33 28-Sep-23 0.75 1.28 4.76 0.53 291.33 30-Oct-14 - - - - - 9-Jun-15 - - - - - 23-Jun-15 - 1.88 - 280.70 - - 13-Oct-16 18-May-17 - 1.88 - 289.77 - 1.51 - 288.76 17-Oct-18 11-9 1.30 1.60 0.11 288.47 - - 1.21 1.28 1.93 0.07 288.47 - - - - -													-
7-Oct-21 4.May-22 0.75 1.25 4.82 0.50 291.36 18-Oct-22 0.75 1.04 4.86 0.29 291.37 -													-
18-Oct-22 10-May-23 0.75 1.04 4.66 0.29 291.57 28-Sep-23 0.75 1.28 4.76 0.53 291.33 0		-											-
10-May-23 28-Sep-23 0.75 1.28 4.76 0.53 291.33 0.75 1.80 5.66 1.05 290.81 Clear, odour, well lid detached, no PVC cap 8-May-14 30-Oct-14 - - - - - 9-Jun-15 - - - - - 23-Jun-15 - - - - - 23-Jun-15 - - - - - 23-Jun-15 - 1.88 - - 287.99 22-Oct-16 - 1.64 - 288.01 - - 289.01 13-Oct-16 - 1.51 - 288.01 - - 289.01 -													-
28-Sep-23 0.75 1.80 5.66 1.05 290.81 Clear, odour, well lid detached, no PVC cap 30-Oct-14 -													-
B-May-14 30-Oct-14 9-Jun-15 22-Jun-15 22-Jun-15 6-Aug-15 22-Oct-15 13-Oct-16 13-Oct-16 13-Oct-16 11-Jun-19 25-Sep-19 25-Sep-19 2-Jun-20 1-Oct-21 12-May-21 7-Oct-21 4-May-22 10-May-23 - <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>- Clear odour well lid detached no PV/C can</td></td<>													- Clear odour well lid detached no PV/C can
30-Oct-14 9-Jun-15 22-Jun-15 22-Jun-15 3-3-Jun-15 6-Aug-15 22-Oct-15 13-Oct-16 18-May-17 25-Oct-17 2-May-18 11-Jun-19 25-Sep-19 25-Sep-19 2-Jun-20 1-Oct-20 12-Jun-20 1-Oct-20 12-May-21 7-Oct-21 18-Oct-22 10-May-22 0 -	 												-
22-Jun-15 -		30-Oct-14			-	-	-	-					-
23-Jun-15 -						1.22			288.55				-
Bernorman 6-Aug-15 22-Oct-15 13-Oct-16 13-Oct-16 18-May-17 25-Oct-17 2-May-18 289.30 11-Jun-19 25-Sep-19 2-Jun-20 1.13 1-Oct-22 1-Oct-22 12-May-21 7-Oct-21 18-Oct-22 18-Oct-22 10-May-23						-			-				-
In-10-02-16 In-10-02-17 In-10-02-18 In-10-02-12						1.88	-	-					-
18-May-17 25-Oct-17 2-May-18 17-Oct-18 11-Jun-19 25-Sep-19 25-Sep-19 25-Sep-19 25-Sep-19 2-Jun-20 1-Oct-20 12-May-21 7-Oct-21 4-May-22 10-May-23 289.77 - 1.73 - - - 288.04 288.07 1.73 - - 288.04 288.13 1.77 5058495 593597 - - - - - 289.77 - 1.64 - - 288.04 - - 289.77 1.71 - - 288.07 17T 5058495 593597 - - - - - - 289.77 - - - 288.07 - - 288.07 - - 288.07 - - 288.07 - - - 288.07 -													-
DP-7 25-Oct-17 2-May-18 17-Oct-18 11-Jun-19 25-Sep-19 2-Jun-20 1-Oct-20 12-May-21 7-Oct-21 4-May-22 18-Oct-22 10-May-23 289.30 289.77 - 1.64 - - 288.13 288.26 17T 5058495 593597 - - - - 288.26 - - - 288.26 17T 5058495 593597 - - - - 288.26 - - - - - 288.26 - - - 288.26 -						1 70		1	299.04				-
DP-7 2-May-18 17-Oct-18 11-Jun-19 25-Sep-19 25-Sep-19 2-Jun-20 1-Oct-20 12-May-21 7-Oct-21 4-May-22 10-May-23 289.77 Z89.77 - 1.51 - - 288.26 288.41 17T 5058495 593597 - - - - - 289.77 - - 289.77 1.51 - - 288.26 17T 5058495 593597 - <td></td> <td>-</td>													-
17-Oct-16 1.31 - 200,20 11-Jun-19 1.21 1.28 1.93 0.07 288.49 25-Sep-19 1.13 1.36 1.81 0.23 288.41 2-Jun-20 1.19 1.30 1.60 0.11 288.47 1-Oct-20 1.19 1.30 1.60 0.11 288.47 12-May-21 1.21 1.48 1.59 0.27 288.29 7-Oct-21 1.19 1.34 1.55 0.15 288.43 4-May-22 1.19 1.46 1.58 0.27 288.31 18-Oct-22 1.23 1.40 1.59 0.17 288.37 10-May-23 1.20 1.30 1.59 0.10 288.47							DRY						-
25-Sep-19 1.13 1.36 1.81 0.23 288.41 2-Jun-20 NA - - - 1-Oct-20 1.19 1.30 1.60 0.11 288.47 12-May-21 1.21 1.48 1.59 0.27 288.29 7-Oct-21 1.19 1.34 1.55 0.15 288.43 18-Oct-22 1.19 1.46 1.58 0.27 288.31 18-Oct-22 1.23 1.40 1.59 0.17 288.37 10-May-23 1.20 1.30 1.59 0.10 288.47	UP-7	17-Oct-18	289.30	289.77						17T	5058495	593597	
2-Jun-20 NA 1-Oct-20 1.19 1.30 1.60 0.11 288.47 12-May-21 1.21 1.48 1.59 0.27 288.29 7-Oct-21 1.19 1.34 1.55 0.15 288.43 4-May-22 1.19 1.46 1.58 0.27 288.31 18-Oct-22 1.23 1.40 1.59 0.17 288.37 10-May-23 1.20 1.30 1.59 0.10 288.47													-
1-Oct-20 1.19 1.30 1.60 0.11 288.47 12-May-21 1.21 1.48 1.59 0.27 288.29 7-Oct-21 1.19 1.34 1.55 0.15 288.43 4-May-22 1.19 1.46 1.58 0.27 288.31 18-Oct-22 1.23 1.40 1.59 0.17 288.37 10-May-23 1.20 1.30 1.59 0.10 288.47		-			1.13	1.30		0.23	200.41				-
7-Oct-21 1.19 1.34 1.55 0.15 288.43 4-May-22 1.19 1.46 1.58 0.27 288.31 18-Oct-22 1.23 1.40 1.59 0.17 288.37 10-May-23 1.20 1.30 1.59 0.10 288.47					1.19	1.30		0.11	288.47				Insufficient volume to sample. No cap.
4-May-22 1.19 1.46 1.58 0.27 288.31 18-Oct-22 1.23 1.40 1.59 0.17 288.37 10-May-23 1.20 1.30 1.59 0.10 288.47													Insufficient volume to sample.
18-Oct-22 1.23 1.40 1.59 0.17 288.37 10-May-23 1.20 1.30 1.59 0.10 288.47													
10-May-23 1.20 1.30 1.59 0.10 288.47 Insufficient volume to sample.													
20-360-23 1.20 1.33 1.30 0.33 205.22 Vvater ievel only.		28-Sep-23			1.20	1.55	1.58	0.35	288.22				Water level only.

TABLE 1 Groundwater Monitoring Location Data Croft Waste Disposal Site Magnetawan , Ontario

Imber	и/ууу)	urface (masl)	ation ()	TOC (m)	evel ment C (m)	Depth C (m)	to vater s)	Water ration ()	U	M Coordina	tes	
Well ID Number	Date (dd/mm/yyyy)	Ground Surface Elevation (masl)	TOC Elevation (masl)	Height of TOC from Ground Surface (m)	Water Level Measurement from TOC (m)	Total Well Depth from TOC (m)	Depth to Groundwater (mbgs)	Calculated Water Level Elevation (masl)	Zone	Northing (m)	Easting (m)	Comments
	8-May-14			-	-	-	-	-				-
	30-Oct-14 9-Jun-15			-	- 1.59	-	-	- 289.47				-
	22-Jun-15			-	-	-	-	-				-
	23-Jun-15			-	-	-	-	-				-
	6-Aug-15			-	1.89	-	-	289.17				-
	22-Oct-15			-	1.96	-	-	289.10				-
	13-Oct-16 18-May-17			-	1.70	- DRY	-	289.36				-
	25-Oct-17			-	2.06	-	-	289.00				-
	2-May-18	000 54	004.00	-	1.35	-	-	289.71	477	5050540	500750	-
DP-8	17-Oct-18	290.54	291.06	-	2.04	-	-	289.02	17T	5058510	593752	-
	11-Jun-19			4.00	4 4 4	DRY	0.04	200.00				-
	25-Sep-19 2-Jun-20			1.23	1.44	2.13 NA	0.21	289.62				-
	1-Oct-20			1.28	1.48	1.60	0.20	289.58				Insufficient volume to sample. No cap.
	12-May-21			1.29	1.48	1.58	0.19	289.58				Insufficient volume to sample.
	7-Oct-21			1.28	1.48	1.60	0.20	289.58				Insufficient volume to sample.
	4-May-22			1.28	1.46	1.59	0.18	289.60				Insufficient volume to sample.
	18-Oct-22			1.29	1.48	1.59	0.19	289.58				Insufficient volume to sample.
	10-May-23			1.29 1.29	1.52 1.58	1.59 1.60	0.23	289.54				Insufficient volume to sample.
	28-Sep-23 8-May-14			-	-	-	0.29	289.48				Water level only.
	30-Oct-14			-	-	-	-	-				-
	9-Jun-15			-	1.28	-	-	289.64				-
	22-Jun-15			-	-	-	-	-				-
	23-Jun-15 6-Aug-15			-	- 1.58	-	-	- 289.34				-
	22-Oct-15				1.50	DRY	_	203.04				-
	13-Oct-16			-	1.33	-	-	289.59				-
	18-May-17			-	1.11	-	-	289.81				-
	25-Oct-17			-	1.18	-	-	289.74				-
DP-9	2-May-18 17-Oct-18	289.97	290.92	-	1.08 1.22	-	-	289.84 289.70	17T	5058461	593753	-
	11-Jun-19				1.22			200.70				-
	25-Sep-19				Co	uld not loc	ate					-
	2-Jun-20						1					-
	1-Oct-20			0.95	1.06	1.57	0.11	289.86				Insufficient volume to sample. No cap.
	12-May-21 7-Oct-21			0.95 0.95	1.02 1.00	1.58 1.56	0.07 0.05	289.90 289.92				Insufficient volume to sample. Insufficient volume to sample.
	4-May-22			0.95	1.00	1.56	0.05	289.92				-
	18-Oct-22			0.94	1.00	1.58	0.07	289.91				insufficient volume to sample
	10-May-23			0.93	0.98	1.55	0.05	289.94				insufficient volume to sample
	28-Sep-23			-	-	-	-	-				No water level; bear in area
	12-May-21 7-Oct-21			0.89 0.89	1.34 1.26	7.24 7.40	0.45 0.37	288.53 288.61				-
	4-May-22	0 0		0.89	1.20	7.40	0.37	288.57	· — —			-
BH-12	18-Oct-22	288.90	289.87	0.88	1.34	7.32	0.46	288.53	17T	5058569	593600	
	10-May-23			0.87	1.23	7.30	0.36	288.64				-
	28-Sep-23			0.87	1.89	7.30	1.02	287.98				Grey, odour, good well condition
	12-May-21 7-Oct-21			1.29 0.85	1.48 2.79	1.58 7.79	0.19 1.94	290.09 288.78				-
	4-May-22	200.02	201 57	0.85	2.79	7.20	1.94	288.78	477	5059464	502725	-
BH-13	18-Oct-22	290.82	291.57	0.85	6.52	7.20	5.67	285.05	17T	5058461	593735	-
	10-May-23			0.85	2.84	7.21	1.99	288.73				
	28-Sep-23 12-May-21			0.85 0.70	3.25 1.35	7.20 7.13	2.40 0.65	288.32 288.91				Cloudy, no odour, good well condition
	7-Oct-21			0.70	1.35	7.13	0.65	288.91				Purged dry.
BH-14	4-May-22	289.42	290.26	0.70	1.30	7.13	0.60	288.96	17T	5058554	593760	-
511-14	18-Oct-22	200.42	230.20	0.70	1.33	7.15	0.63	288.93	17.1	0000004	555700	-
	10-May-23 28-Sep-23			0.70 0.70	1.33 1.52	7.14	0.63 0.82	288.93 288.74				- Cloudy, no odour, good well condition
L	20-3ep-23		I	0.70	1.02	1.03	0.02	200.74				Ciouay, no ouour, good well condition

Notes:

mbgs I	Aeters below ground surface
--------	-----------------------------

masl Meters above sea level

TOC Top of casing

NA No data available

TABLE 2Surface Water Monitoring Location DataCroft Waste Disposal SiteMagnetawan, Ontario

Currénan	UT	M Coordir	nates	
Surface Water Monitoring Location	Zone	Easting (m)	Northing (m)	Comments
SW1	17T	593867	5058308	Dry
SW2	17T	593556	5059083	Lake
SW3	17T	593592	5058498	Dry

TABLE 3 Groundwater Quality Results - BH-1 Croft Waste Disposal Site Magnetawan, Ontario

									s	ample Designati	on								T
Parameter	Units								Sample Co	ollection Date (m	m/dd/yyyy)								ODWQS
i di diffeter	onito		T	T	1	· · · · · · · · · · · · · · · · · · ·				BH1	,					1	T	1	- OD MQO
		6-Aug-15	22-Oct-15	13-Oct-16	18-May-17	25-Oct-17	2-May-18	17-Oct-18	11-Jun-19	25-Sep-19	2-Jun-20	1-Oct-20	12-May-21	7-Oct-21	4-May-22	18-Oct-22	10-May-23	28-Sep-23	0505
pH Lab Conductivity	pH Units uS/cm	6.55 92	NA	6 596	6.3 96	6.2 97	6.2 68	6.1 134	6.67 57	6.54 146	6.64 101	6.33 189	6.41 89	7.10	6.88 123	7.00 433	7.04	6.74 472	6.5-8.5
Conductivity	mg/L	92 34	-	185	96 16	97 25	19	33	17.2	32	20.7	59 59	30.5	50.1	43.7	84.1	55.2	173	- 80-100
Hardness Total Dissolved Solids	mg/L	126	-	416	114	78	46	128	76	90	76	120	94	240	43.7 66	271	143	397	500
Alkalinity	mg/L	32	-	55	26	38	25	38	24	39	36	74	38	59	49	99	66	82	30-500
Chloride	mg/L	7.9	-	54	5	5	5	7	1.9	5.34	2.8	12.7	3.0	11.0	7	16.0	6.0	36.0	250
Sodium	mg/L	1.2	-	30	5.61	6.32	3.33	5.23	3.9	7.55	4.7	7.3	5.8	9.1	6.78	10.3	7.1	17.7	200
Calcium	mg/L	9.9	-	63.1	5.42	8.24	6.11	10.5	5.5	9.62	6.4	18.1	9.8	15.3	13.3	25.2	16.0	52.4	-
Magnesium	mg/L	2.3	-	6.75	0.699	1.12	0.859	1.62	0.86	1.84	1.13	3.36	1.48	2.88	2.56	5.12	3.69	10.10	-
Potassium	mg/L	1.4	-	2.95	1.16	1.79	1.09	1.5	1.2	1.82	1.3	2.2	1.5	2.1	2.02	2.9	3.8	6.2	-
Sulphate	mg/L	<1	-	154	5	154	1	19	2.1	10.2	2.4	18.0	4.0	<20	5	24.0	6.0	94.0	500
Ammonia	mg/L	<0.05	-	0.09	0.12	0.23	0.08	0.08	0.4	0.21	0.2	0.1	0.1	0.1	0.08	0.1	0.1	0.2	-
Nitrate as N	mg/L	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.05	< 0.05	<0.05	<0.05	< 0.03	0.53	< 0.06	< 0.06	< 0.06	< 0.06	10
Nitrite as N	mg/L	<0.01 0.47	-	<0.05	<0.05 1.8	<0.05 1.1	<0.05 0.4	<0.05 1.4	<0.05 0.77	<0.05 0.68	<0.05 0.53	<0.05 0.72	< 0.06 0.40	<0.03	< 0.03 0.49	< 0.03 0.43	< 0.03 0.63	< 0.03 0.73	1
Total Kjeldahl Nitrogen Phenolics	mg/L mg/L	<0.001	-	<0.001	<0.001	0.004	0.4 <0.001	<0.001	<0.001	<0.001	0.53	<0.001	< 0.002	<0.002	< 0.002	0.43	0.63	< 0.002	-
Dissolved Organic Carbon	mg/L	7.2	-	13.3	16.1	15.8	8.2	17.5	10.6	8.5	10.0	15.6	12.0	13.0	18	17.0	20.0	12.0	5
Chemical Oxygen Demand	mg/L	76	-	62	108	63	27	74	28	31	32	<5	27	33	40	51	49	44	-
Iron	mg/L	8.5	-	16.7	1.49	4.94	2.29	8.76	4.35	7.32	5.48	13.9	5.18	10.4	6.76	17.1	7.99	40.5	0.3
Manganese	mg/L	1.5	-	4.1	0.579	0.611	0.45	0.819	0.46	0.86	0.53	1.40	0.95	1.17	1.24	2.20	1.59	3.69	0.05
Phosphorus	mg/L	0.7	-	0.1	0.8	0.29	0.06	0.27	0.22	0.06	0.02	0.06	0.06	<0.03	< 0.03	< 0.03	0.07	0.03	-
Orthophosphate	mg/L	-	-	-	-	-	-	-	-	-	<0.10	-	-	-	0.03	-	< 0.03	< 0.03	-
Turbidity	NTU	60	-	94.1	507	158	22.9	118	58.4	44.2	22.4	8.1	5.5	3.3	4.35	3.2	26.0	21.0	5
Total Suspended Solids	mg/L	140	-	142	822	422	56	181	150	61	37	27	133	40	35	23	88	85	-
BOD	mg/L	<2	-	2	<20	6	<2	3	<5	<5	<5	3	< 4	<4	< 4	< 4	< 4	< 4	-
Anion Sum		0.869	-	5.84 5.09	0.74	0.96	0.66 0.55	1.35 0.92	-	-	-	-	-	-	-	-	-	-	-
Cation Sum Ion Balance	- %	-	-	-6.9	0.6	- 0.62	-9.6	0.92 N/A		-	-	-	-	-	-	-	-	-	
Silver	mg/L	<0.0001	-	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.002	< 0.002	<0.0001	<0.0001	< 0.00005	<0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	-
Aluminum	mg/L	0.53	-	0.199	0.253	0.321	0.311	0.883	0.537	0.44	0.50	0.83	0.40	0.46	0.473	0.25	0.35	0.20	0.1
Antimony	mg/L	<0.0005	-	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.003	< 0.003	<0.001	<0.001	< 0.0009	<0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009	0.006
Arsenic	mg/L	<0.001	-	<0.001	<0.001	0.001	0.001	0.004	< 0.003	< 0.003	<0.001	0.007	0.0014	0.0021	0.0014	0.0025	0.0014	0.0024	0.010
Barium	mg/L	0.033	-	0.192	0.025	0.032	0.013	0.045	0.024	0.04	0.023	0.059	0.033	0.051	0.0466	0.085	0.056	0.161	1
Beryllium	mg/L	<0.0005	-	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.001	<0.001	<0.0005	<0.0005	0.000069	0.000124	0.000139	0.000105	0.000083	0.000065	-
Bismuth	mg/L	<0.001	-	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.002	<0.002	<0.002	0.00002	0.00003	< 0.00001	0.00001	0.00001	< 0.00001	-
Boron	mg/L	<0.01	-	0.202	0.014	0.015	0.025	0.026	0.017	0.03	0.014	0.045	0.024	0.059	0.046	0.101	0.044	0.152	5
Cadmium	mg/L	< 0.0001	-	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.001	< 0.001	< 0.0001	<0.0001	< 0.000003	0.000009	0.000061	0.000007	0.000028	< 0.000003	0.005
Chromium	mg/L mg/L	<0.005	-	0.003	<0.001 0.0071	0.001 0.0087	<0.001 0.0044	0.002	<0.003	<0.003 0.01	<0.002 0.005	0.003	0.00161 0.008	0.00166	0.00132	0.00178	0.00142	0.0016	0.05
Cobalt Copper	mg/L	0.0087	-	0.0000	0.0071	0.0087	0.0044	0.0059	0.005	0.01	0.005	0.018	0.008	0.003	0.0053	0.001	0.002	0.002	- 1
Molybdenum	mg/L	0.0005	-	< 0.0005	<0.0005	< 0.0005	<0.0005	< 0.0005	<0.002	<0.002	<0.002	<0.002	0.00019	0.00034	0.00026	0.0004	0.00039	0.0007	-
Nickel	mg/L	0.0019	-	0.004	< 0.001	0.001	< 0.001	0.003	< 0.003	< 0.003	< 0.003	< 0.003	0.0012	0.0011	0.0017	0.0016	0.0013	0.0037	-
Phosphate	mg/L	-	-	<0.0002	<0.2	<0.2	<0.2	<0.0002	<0.10	<0.10	-	<0.10	< 0.03	-	-	-	-	-	-
Lead	mg/L	0.00094	-	0.0002	0.0005	0.0005	0.0002	0.0016	0.001	0.002	0.0008	0.002	0.00062	0.00089	0.00035	0.0002	0.00025	0.00015	0.01
Selenium	mg/L	<0.002	-	<0.001	<0.0001	0.002	0.002	0.006	<0.004	<0.004	<0.001	0.001	0.00019	0.00026	0.0002	0.00028	0.00038	0.00083	0.05
Sillicon	mg/L	7.4	-	5.05	3.13	4.05	2.52	3.6	3.22	5.90	3.43	4.96	3.76	5	3.98	6.86	4.08	6.98	<u> </u>
Tin	mg/L	<0.001	-	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.002	0.05	<0.002	<0.002	< 0.00006	<0.00006	0.00013	< 0.00006	0.00011	0.0001	<u>↓ ·</u>
Strontium	mg/L	0.06	-	0.068	0.019	0.048	0.035	0.06	0.031	<0.002	0.033	0.092	0.056	0.077	0.0649	0.133	0.084	0.278	<u> </u>
Titanium	mg/L	0.14	-	0.009	0.027	0.034 0.0007	0.025	0.072	0.056	0.08	0.035	0.125	0.0434 0.001	0.0572	0.0347	0.0235	0.0216	0.012	- 0.02
Uranium Vanadium	mg/L mg/L	0.002	-	0.0012	0.0008	0.0007	0.0005	0.0014	<0.002	0.002	0.001	0.002	0.001	0.001	0.000712	0.001	0.001	0.002	0.02
Zinc	mg/L	<0.0057	-	<0.0071	<0.0023	<0.0027	<0.0023	0.0077	< 0.004	0.01	< 0.004	<0.007	< 0.002	0.00452	0.00433	0.00503	< 0.002	0.003	5
Field Measurements	g/∟	~0.000	_	-0.000		-0.000	-0.000	0.02	-0.000	0.00	-0.000	-0.000	< 0.00∠ <	0.000	0.000	0.002	~ 0.002	0.000	
Temperature	оС	4.91	-	5.22	6.37	6.24	8.08	6.45	10.3	13.1	9.2	11.62	6.42	12.1	-	10.1	12.3	11.9	-
pН	pH Units	-	-	-	-	-	-	-	6.4	5.4	5.4	5.9	15.9	6.7	-	6.1	5.7	6.0	6.5-8.5
Coductivity	uS/cm	6.55	-	786	-	-	0.08	0.19	78.40	118.50	116.70	143.00	69.00	1290.00	-	225.10	129.00	443.40	<u> </u>
Oxidation Reduction Potential	mV	-	-	-	-	-	-	-	145.3	176.5	170.6	98	53.5	27	-	28	77	10.9	-
Dissolved Oxygen	mg/L	-	-	-	-	-	-	-	1.21	1.18	1.15	7.44	1.42	1.35	-	2.15	1.05	1.73	-

Notes:

Ontario Drinking Water Quality Standards - Ontario Regulation 169/03 "Ontario Drinking Water Quality Standards" under the Safe Drinking Water Act", dated 2002, and "Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines", dated June 2003.

BOLD Exceeds ODWQS

ODWQS

INSV Insufficient volume to allow for sampling

NC Not Calculated CNL Could Not Locate

CNL Could Not Locate - Data not available

LS Limited Sample

TABLE 4 Groundwater Quality Results - BH-8 Croft Waste Disposal Site Magnetawan, Ontario

										Sample Designation									_
Parameter	Units								Sample C	ollection Date (m	m/dd/yyyy)								ODWQS
		6 4.00 45	22-Oct-15	13-Oct-16	18-May-17	25-Oct-17	2-May-18	17-Oct-18	11-Jun-19	BH-8	2-Jun-20	1-Oct-20	12-May-21	7-Oct-21	4-May-22	18-Oct-22	10-May-23	28 Cam 22	4
pH Lab	pH Units	6-Aug-15 7.87	7.62	7.2	6.7	25-0ct-17 7	2-iviay-10 6.4	6.7	6.62	25-Sep-19 6.72	2-Jun-20 6.57	6.21	6.59	6.93	6.55	7.02	6.77	28-Sep-23 7.14	6.5-8.5
Conductivity	uS/cm	450	200	124	88	103	68	94	35	70	51	51	39	60	28	77	31	7.14	
Hardness	mg/L	190	62	39	18	20	10	27	9.8	22.8	13.5	18.9	11.1	9.2	5.9	27.5	7.6	28.8	80-100
Total Dissolved Solids	mg/L	298	158	118	110	80	42	58	50	68	44	32	< 30	46	40	< 30	37	91	500
Alkalinity	mg/L	180	86	48	31	34	18	28	11	23	12	27	9	16	8	30	8	27	30-500
Chloride	mg/L	16	3.5	1	<0.001	<0.1	<1	<1	0.5	0.4	0.5	0.4	2	<1	< 1	< 1	2	< 1	250
Sodium	mg/L	9.9	1.9	2.7	8.35	7.9	7.37	3.36	2.8	2.5	1.8	1.9	3.25	4.26	3.63	2.13	2.96	2.38	200
Calcium	mg/L	53	17	11.3	5.8	6.28	2.97	7.39	2.9	6.2	4.0	5.4	3.26	2.76	1.81	6.58	1.98	6.76	-
Magnesium	mg/L	15	5.1	2.59	0.926	1.06	0.533	2.1	0.7	1.8	0.9	1.3	0.709	0.563	0.34	2.690	0.659	2.890	-
Potassium	mg/L	12	5.6	3.14	1.42	1.65	0.888	2.02	0.8	1.70	0.8	1.32	0.735	0.556	0.371	1.790	0.545	2.010	-
Sulphate	mg/L	31	8.6	10	0.014	17	12	17	5.1	8.8	6.8	7.1	5	10	5	7	6	8	500.0
Ammonia	mg/L	0.11	<0.05	0.05	0.01	0.05	0.01	0.01	0.11	<0.02	<0.02	< 0.02	< 0.04	<0.04	< 0.04	0.04	< 0.04	< 0.04	-
Nitrate as N	mg/L	<0.1	<0.1	<0.1	<0.1	<0.1	0.3	0.1	< 0.05	0.06	0.07	< 0.05	< 0.03	0.23	0.11	0.08	< 0.06	< 0.06	10
Nitrite as N	mg/L	0.032	<0.01	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	0.14	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	1
Total Kjeldahl Nitrogen Phenolics	mg/L mg/L	0.25	<0.2 <0.001	0.3 <0.001	0.4 <0.001	0.3 <0.001	0.4	0.2	0.36	0.86 NA	0.28	0.19 <0.001	0.13 < 0.002	0.15 <0.002	0.09	0.05	0.16	0.16	-
Phenolics Dissolved Organic Carbon	mg/L mg/L	3	<0.001	3.4	<0.001	<0.001 9.7	<0.001	<0.001 58	2.6	3.1	3.3	3.5	< 0.002	<0.002	< 0.002	0.003	< 0.002	< 0.002	- 5
Chemical Oxygen Demand	mg/L	120	1.5	127	59	109	54	37	<5	12	8	<5	4	8	4 < 8	< 8	9	15	-
Iron	mg/L	<0.1	0.39	<0.1	<0.1	<0.1	<0.1	<0.1	0.05	<0.010	0.06	0.030	0.082	0.095	0.073	0.139	0.072	0.047	0.3
Manganese	mg/L	0.1	0.12	0.055	0.926	0.027	0.01	0.03	0.00	0.02	0.01	0.01	0.0080	0.0066	0.00278	0.0146	0.0049	0.0100	0.05
Phosphorus	mg/L	9.2	0.61	0.68	0.22	0.53	0.26	0.2	0.13	0.21	0.32	0.13	0.10	0.19	0.04	< 0.03	0.14	0.07	-
Orthophosphate	mg/L	-	-	-	-	-	-	-	-	-	<0.10	-	-	-	0.03	-	0.04	< 0.03	-
Turbidity	NTU	4100	220	900	225	451	195	304	162	192	150	119	21.6	17.0	16.3	15.0	150.0	29.0	5
Total Suspended Solids	mg/L	4200	1100	932	272	584	297	234	154	227	198	274	26	152	43	45	126	64	-
BOD	mg/L	2	<2	ND (20)	<2	<20	<2	<2	<5	<5	<5	<2	< 4	<4	< 4	< 4	< 4	< 4	-
Anion Sum	-	4.64	1.99	1.2	0.94	1.05	0.65	0.95	-	-	-	-	-	-	-	-	-	-	-
Cation Sum	-	4.6	1.48	0.99	0.76	0.79	0.54	0.75	-	-	-	-	-	-	-	-	-	-	-
Ion Balance	%	0.44	NC	-9.6	-	-	-9	-	-	-	-	-	-	-	-	-	-	-	<u> </u>
Silver	mg/L	<0.0001	<0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.002	< 0.002	< 0.0001	< 0.0001	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	-
Aluminum	mg/L	0.031	0.0064	0.046	0.142	0.094	0.167	0.042	0.101	0.065	0.076	0.056	0.119	0.163	0.195	0.089	0.126	0.038	0.1
Antimony Arsenic	mg/L mg/L	<0.0005 <0.001	<0.0005 0.0013	<0.0005 <0.001	<0.0005 <0.001	<0.0005 <0.001	<0.0005 <0.001	<0.0005 <0.001	<0.003 <0.003	<0.003 <0.003	<0.001 <0.001	<0.001 <0.001	< 0.0009 < 0.0002	<0.0009 0.0004	< 0.0009 0.0005	< 0.0009 0.0017	< 0.0009 0.0008	< 0.0009 0.0005	0.006
Barium	mg/L	0.1	0.082	0.053	0.022	0.032	0.009	0.035	0.019	0.033	0.020	0.024	0.0161	0.0004	0.0005	0.0304	0.0008	0.0319	1.00
Beryllium	mg/L	<0.0005	< 0.002	< 0.0005	<0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.001	<0.000	< 0.0005	< 0.0005	0.000013	0.000028	0.000025	0.000013	0.000025	0.000023	-
Bismuth	mg/L	<0.001	<0.000	<0.000	<0.000	<0.000	<0.001	<0.001	< 0.002	<0.002	<0.002	<0.002	< 0.000013	<0.000020	< 0.000023	< 0.000013	< 0.000023	0.000023	
Boron	mg/L	0.027	<0.01	0.012	<0.01	<0.01	0.044	<0.01	< 0.010	<0.010	<0.010	< 0.010	0.025	0.009	0.007	0.027	0.004	0.012	5
Cadmium	mg/L	<0.0001	<0.0001	0.0003	<0.0001	<0.0001	<0.0001	0.0008	< 0.001	< 0.001	<0.0001	<0.0001	0.000026	0.000028	0.000014	0.000055	0.000034	0.000045	0.005
Chromium	mg/L	<0.005	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.003	<0.003	<0.002	<0.002	0.00037	0.00026	0.00038	0.00020	0.00045	0.00026	0.05
Cobalt	mg/L	<0.0005	0.00065	0.0007	0.0007	0.0012	0.0008	0.0013	<0.001	0.001	0.001	0.002	0.00092	0.00124	0.000528	0.00069	0.00042	0.00065	-
Copper	mg/L	<0.001	<0.001	0.0019	0.0277	0.0179	0.0222	0.00068	0.011	0.008	0.01	0.013	0.0139	0.0238	0.0156	0.0073	0.0113	0.0069	1
Molybdenum	mg/L	0.013	0.0015	0.0011	0.0039	0.0011	0.0017	0.0005	<0.002	<0.002	<0.002	<0.002	0.00055	0.00066	0.00057	0.00037	0.00039	0.00074	-
Nickel	mg/L	0.019	0.0032	0.004	0.011	0.01	0.006	0.007	0.005	0.006	0.006	0.008	0.0044	0.0050	0.0027	0.0035	0.0020	0.0034	-
Phosphate	mg/L	-	-	< 0.0002	<0.2	<0.2	<0.2	<0.2	<0.10	<0.10	-	<0.10	0.04	-	-	-	-	-	-
Lead	mg/L	<0.0005	< 0.0005	< 0.0001	0.0001	0.0001	< 0.0001	< 0.0001	< 0.001	< 0.001	< 0.0005	< 0.0005	0.00014	0.00015	< 0.00009	0.00014	0.00011	< 0.00009	0.01
Selenium	mg/L	<0.002	<0.002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.004	< 0.004	<0.001	< 0.001	0.00006	0.00008	0.00005	0.00006	0.00010	< 0.00004	0.05
Sillicon	mg/L	5.3	5.6	4.71	2.96	4.15	2.95	3.49	3.17	4.42	2.85	4.3	3.02	3.57	2.5	4.65	2.71	4.38	<u>+ ·</u>
Tin Strontium	mg/L mg/L	<0.001 0.16	<0.001 0.056	<0.005 0.039	<0.005 0.029	<0.005 0.025	<0.005 0.014	<0.005 0.03	<0.002 0.015	0.026	<0.002 0.015	<0.002	0.00007 0.0147	<0.00006 0.0151	0.00008	< 0.00006 0.0277	0.00010 0.0104	0.00008	+ <u>·</u>
Strontium Titanium	mg/L	<0.005	<0.005	<0.039	0.029	< 0.025	0.014	<0.005	0.015	0.002	0.015	<0.022	0.00466	0.0151	0.00378	0.0277	0.0104	0.0295	+
Uranium	mg/L	0.0022	0.00017	0.0001	0.0002	0.0002	0.0001	0.0002	< 0.002	<0.003	< 0.005	<0.002	0.000466	0.00437	0.000378	0.000132	0.000350	0.00105	0.02
Vanadium	mg/L	0.00074	< 0.0005	0.0001	0.0002	< 0.0002	< 0.0005	<0.0002	<0.002	<0.002	<0.002	<0.0003	0.000232	0.000210	0.000092	0.000132	0.000232	0.000132	-
Zinc	mg/L	<0.005	0.0088	0.01	0.088	-	0.018	0.031	0.017	0.032	0.021	0.031	0.00000	0.0023	0.009	0.0034	0.010	0.00027	5
Field Measurements													-						<u> </u>
Temperature	оС	-	-	-	-	-	-	-	11.3	Partial sample,	7	10.7	8.4	11.5	5.7	8.9	12.9	12.2	Τ-
рН	pH Units	6.91	5.37	6.43	7.45	7.38	7.8	7.78	6.8	no field chem	5.42	5.8	4.91	6.62	16.25	6.81	5.12	6.64	T -
Coductivity	uS/cm	368	179	114	-	-	0.1	0.11	43.3	-	42.1	38	28	34	17.8	52.5	26	57.9	<u> </u>
Oxidation Reduction Potential	mV	-	-	-	-	-	-	-	111	-	105.5	353.4	194.1	64.2	101.9	-1.1	135.9	152	-
exadation recorded																10.29		5.05	

Ontario Drinking Water Quality Standards - Ontario Regulation 169/03 "Ontario Drinking Water Quality Standards" under the Safe Drinking Water Act", dated 2002, and "Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines", dated June 2003.

BOLD Exceeds ODWQS

ODWQS

INSV Insufficient volume to allow for sampling

NC Not Calculated

CNL Could Not Locate

- Data not available

LS Limited Sample

TABLE 5 Groundwater Quality Results - BH-9 Croft Waste Disposal Site Magnetawan, Ontario

										ample Designati									
Parameter	Units								Sample Co	llection Date (m	m/dd/yyyy)								ODWQS
	-		00.0.1.15	40.0.440	40.00.47	05 0 4 47	0.14	47.044.40	44.1	BH9	0.1	1.0.1.00	40.04	7.0.4.04	4 14 - 00	40.0.4.00	40.04		-
	pH Units	6-Aug-15 7.56	22-Oct-15 6.78	13-Oct-16 6.9	18-May-17 7.2	25-Oct-17 7.1	2-May-18 6.5	17-Oct-18 6.7	11-Jun-19 7.27	25-Sep-19 7.04	2-Jun-20 7.10	1-Oct-20 6.73	12-May-21 7.00	7-Oct-21 7.64	4-May-22 7.50	18-Oct-22 7.51	10-May-23 7.43	28-Sep-23 7.55	6.5-8.5
pH Lab Conductivity	uS/cm	730	750	1050	678	587	523	735	289	694	371	397	268	439	283	698	474	535	0.0-0.0
Hardness	mg/L	220	220	240	156	157	147	276	104	235	115	159	107	150	111	228	162	184	80-100
Total Dissolved Solids	mg/L	496	462	668	454	378	262	494	174	398	228	230	194	287	220	423	314	343	500
Alkalinity	mg/L	210	170	203	187	182	171	200	97	181	101	152	99	156	122	230	165	171	30-500
Chloride	mg/L	48	64	126	65	50	23	20	6.04	22.6	18.0	48.7	18.0	36.0	20	75.0	41.0	52.0	250
Sodium	mg/L	50	50	132	61.3	47.7	29.8	23.9	10.8	23.9	10.1	45.8	10.9	24.5	15.4	41.4	25.0	27.6	200
Calcium	mg/L	64	72	81.8	49.9	49.3	44.4	89.4	34.50	76.50	37.40	51.40	36.10	50.60	37.1	75.20	52.60	60.40	-
Magnesium	mg/L	13	11	8.67	7.55	8.34	8.88	12.8	4.41	10.70	5.25	7.42	4.12	5.87	4.53	9.91	7.49	7.94	-
Potassium	mg/L	17	19	24.8	11	10.7	9.75	15	6.08	9.87	4.74	7.17	4.41	6.89	5.49	15.30	10.30	11.90	-
Sulphate	mg/L	75	88	128	75.0	56.0	62.0	180	37.7	95.8	33.4	16.2	9.0	<20	16	25.0	37.0	15.0	500.0
Ammonia	mg/L mg/L	2.2 <0.1	0.37 2.61	0.82	0.6	0.71	1.78 <0.1	2.13 0.7	1.04 <0.05	1.47 <0.10	0.99 <0.05	0.96 <0.05	1.18 < 0.03	1.48 0.51	1.4 < 0.06	3.84 < 0.06	2.44	2.29	- 10
Nitrate as N Nitrite as N	mg/L	<0.1	0.09	<0.05	<0.05	<0.05	<0.1	<0.05	<0.05	<0.10	<0.05	<0.05	< 0.03	<0.03	< 0.08	< 0.08	< 0.08	< 0.08	10
Total Kjeldahl Nitrogen	mg/L	3.5	1.1	2.7	2.3	1.4	2.8	4.2	1.70	2.73	1.79	2.12	1.99	67.00	1.97	5.20	3.59	2.92	-
Phenolics	mg/L	<0.001	<0.001	0.007	<0.001	<0.001	<0.001	<0.001	<0.001	0.003	0.002	<0.001	< 0.002	< 0.002	< 0.002	0.007	< 0.002	< 0.002	-
Dissolved Organic Carbon	mg/L	20	14	40	23	16.4	33.2	20	16.7	24.1	14.5	28.0	19.0	22.0	19	29.0	19.0	19.0	5
Chemical Oxygen Demand	mg/L	380	81	159	155	16.4	160	169	36	69	68	53	63	67	< 8	81	64	67	-
Iron	mg/L	1.9	0.71	<0.1	0.263	11.4	18.7	17.7	11.1	25.1	15.6	15.9	13.6	16.5	15.9	21	24.9	23.9	0.3
Manganese	mg/L	1.6	1.1	1.03	1.11	1.38	2.79	5.65	1.64	4.16	1.62	1.86	1.27	1.62	1.43	3.94	3.34	2.56	0.05
Phosphorus	mg/L	12	1.3	0.41	0.58	0.18	0.8	0.72	0.1	0.32	0.1	0.1	0.1	0.2	< 0.03	< 0.03	0.0	0.1	-
Orthophosphate	mg/L		-	-	-	-	-	-	-	-	<0.10	-	-	-	0.03	-	< 0.03	0.0	•
Turbidity	NTU	38000	510	758	1130	281	1900	2010	151	196	282	72.8	54.7	69	117	70	210	350	5
Total Suspended Solids	mg/L	55000	1600	1750	1600	<u>394</u> 3	1660	2770	212 <5	100 <5	283 <5	108 9	244	157 <4	185	66	89	447	-
BOD Anion Sum	mg/L	<2 7.18	<2 7.18	ND (30) 10.3	12 7.18	6.23	20 5.37	<20 8.37	<5	<5	<5	-	- 4	<4	< 4	< 4	< 4	< 4	-
Cation Sum	-	7.17	7.16	10.3	6.06	5.5	4.49	6.94	-		-	-	-	-	-	-	-	-	<u> </u>
Ion Balance	%	0.1	0.1	3.9	-8.4	-6.3	-8.9	-9.3	-	-	-	-	-	-	-	-	-	-	<u> </u>
Silver	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	<0.002	<0.002	<0.0001	<0.0001	< 0.00005	<0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	-
Aluminum	mg/L	0.1	0.027	0.08	0.057	0.065	0.1	0.095	0.109	0.161	0.110	0.147	0.136	0.159	0.15	0.141	0.169	0.141	0.1
Antimony	mg/L	<0.0005	<0.0005	0.0005	<0.0005	<0.0005	<0.0005	< 0.0005	<0.003	<0.003	<0.001	<0.001	< 0.0009	<0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009	0.006
Arsenic	mg/L	0.0011	<0.001	0.001	<0.001	<0.001	<0.001	<0.001	<0.003	<0.003	0.002	0.002	0.0009	0.0014	0.0012	0.0013	0.0011	0.0015	0.010
Barium	mg/L	0.13	0.12	0.178	0.095	0.111	0.062	0.18	0.054	0.114	0.047	0.059	0.047	0.072	0.0497	0.113	0.072	0.088	1.00
Beryllium	mg/L	<0.0005	< 0.0005	<0.0005	< 0.0005	<0.0005	< 0.0005	< 0.0005	< 0.001	< 0.001	< 0.0005	< 0.0005	0.00002	0.00004	0.00003	0.000046	0.000034	0.000033	-
Bismuth	mg/L	<0.001	<0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002	< 0.002	< 0.002	< 0.002	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	-
Boron Cadmium	mg/L mg/L	0.62	0.68 <0.0001	1.07	0.394 <0.0001	0.31	0.264	0.527	0.259 <0.001	0.489	0.217 <0.0001	0.384	0.226	0.460	0.3 0.000064	1.170 0.000028	0.547 0.00005	0.584	5 0.005
Chromium	mg/L	<0.0001	<0.0001	0.019	0.001	0.001	0.002	0.002	<0.001	<0.001	<0.0001	<0.0001	0.00166	0.000042	0.000084	0.00028	0.00003	0.00223	0.005
Cobalt	mg/L	0.0015	0.0071	0.0033	0.001	0.0038	0.002	0.0203	0.011	0.027	0.0118	0.002	0.0098	0.0105	0.00782	0.0158	0.00184	0.00223	-
Copper	mg/L	0.0024	0.014	0.0547	0.0271	0.0068	0.0034	0.0051	< 0.003	0.004	0.007	0.003	0.0009	0.0028	0.0031	0.0025	0.0017	0.0023	1
Molybdenum	mg/L	0.0094	0.0076	0.0048	0.0036	0.0027	0.001	0.0014	<0.002	<0.002	<0.002	<0.002	0.001	0.001	0.0008	0.002	0.001	0.001	-
Nickel	mg/L	0.025	0.052	0.037	0.015	0.011	0.01	0.01	<0.003	0.008	0.01	0.004	0.0017	0.0028	0.0019	0.0031	0.0023	0.0024	-
Phosphate	mg/L	-	-	<0.0002	<0.2	<0.2	<0.2	<0.2	<0.10	<0.20	-	<0.10	0.07	-	-	-	-	-	-
Lead	mg/L	<0.0005	<0.0005	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.001	<0.001	<0.0005	<0.0005	0.00009	<0.00009	< 0.00009	0.00012	0.00011	0.00013	0.01
Selenium	mg/L	<0.002	<0.002	0.002	<0.001	<0.001	<0.001	<0.001	< 0.004	<0.004	<0.001	<0.001	0.00019	0.00027	0.00017	0.00035	0.00034	0.0003	0.05
Sillicon	mg/L	6.1	2.6	3.28	3.53	4.95	3.44	3.77	3.57	5.21	3.06	3.84	2.9	4.85	3.19	4.21	3.18	4.34	<u>↓ ·</u>
Tin Strantium	mg/L	<0.001	<0.001 0.24	< 0.005	< 0.005	< 0.005	< 0.005	<0.005 0.347	< 0.002	0.267	< 0.002	<0.002	< 0.00006	< 0.00006	0.00018	0.00011	0.00019 0.197	0.00013	<u>+</u>
Strontium Titanium	mg/L mg/L	0.3 <0.005	<0.24	0.253 <0.005	0.183 <0.005	0.235 <0.005	0.166 <0.005	<0.005	0.121 0.002	<0.002 0.004	0.110 <0.002	0.099	0.128 0.00312	0.173 0.00288	0.119 0.00316	0.283 0.00297	0.197	0.219 0.00262	-
Uranium	mg/L mg/L	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.002	<0.004	<0.002	<0.005	0.000312	0.00288	0.00316	0.00297	0.00309	0.00262	- 0.02
Vanadium	mg/L	0.0023	< 0.0005	0.0049	0.0029	0.0024	0.0012	0.0024	<0.002	0.002	<0.0003	<0.0003	0.000392	0.00304	0.00264	0.003	0.00369	0.0037	-
Zinc	mg/L	0.0063	0.033	0.027	0.023	0.027	0.034	0.04	0.016	0.047	0.008	0.006	0.005	0.007	0.01	0.005	0.005	0.004	5
Field Measurements																			
Temperature	oC	-	-	-	-	-	-	-	10.9	15	9.1	12.69	8.52	12.3	6.3	10.3	8.9	13.4	- 1
рН	pH Units	6.33	6.52	5.68	6.62	6.65	7.23	7.04	6.82	6.15	5.96	6.39	7.04	6.38	15.62	6.63	5.78	6.45	6.5-8.5
Coductivity	uS/cm	652	562	1014	-	-	0.55	0.87	339.2	591	34.9	388	209	392	207	540	397.5	530	-
Oxidation Reduction Potential	mV	-	-	-	-	-	-	-	143.4	46.6	71.6	89.2	18.1	5.3	19.3	-16.8	91.1	-22.4	<u> </u>
Dissolved Oxygen	mg/L	-	-	-	-	-	-	-	6.32	6.05	5.02	10.84	7.9	4.73	5.37	6.66	6.64	9.16	· ·

Notes:

Ontario Drinking Water Quality Standards - Ontario Regulation 169/03 "Ontario Drinking Water Quality Standards" under the Safe Drinking Water Act", dated 2002, and "Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines", dated June 2003.

BOLD

ODWQS

INSV Insufficient volume to allow for sampling

NC Not Calculated

CNL Could Not Locate

- Data not available

LS Limited Sample

TABLE 6 Groundwater Quality Results - BH-10 Croft Waste Disposal Site Magnetawan, Ontario

									Sa	ample Designati	on								
Parameter	Units								Sample Co	llection Date (m	m/dd/yyyy)								ODWQS
i di di licitori	onito				,r			1	n	BH-10			1		1			1	-
		6-Aug-15	22-Oct-15	13-Oct-16	18-May-17	25-Oct-17	2-May-18	17-Oct-18	11-Jun-19	25-Sep-19	2-Jun-20	1-Oct-20	12-May-21	7-Oct-21	4-May-22	18-Oct-22	10-May-23	28-Sep-23	
pH Lab	pH Units	7.47	7.46	7.4	7.2	7.5	7.1	7.3	7.81	7.6	7.67	7.62	7.2	7.92	7.88	7.82	7.84	7.72	6.5-8.5
Conductivity	uS/cm	1900 550	2100 610	1980 607	1.48 513	2010 627	1440 426	1210 328	1790 507	2680 630	2430 563	1880 531	2190 659	2300 553	1640 419	2100 512	1790 504	2670 584	- 80-100
Hardness Total Dissolved Solids	mg/L mg/L	1090	1130	1170	970	1190	730	656	954	1540	1280	1240	1440	1420	946	1220	991	1550	500
Alkalinity	mg/L	670	640	573	487	695	522	496	508	372	527	559	448	383	413	461	341	445	30-500
Chloride	mg/L	170	180	219	185	289	143	104	246	462	381	395	400	480	340	420	410	560	250
Sodium	mg/L	120	120	164	84.8	107	66.5	71.8	129	182.0	144	159	156	191	147	175	186	271	200
Calcium	mg/L	170	190	192	177	200	136	107	169	214.0	178	170	216	181	134	166	158	186	•
Magnesium	mg/L	30	33	30.8	17.2	31.1	21.3	14.5	20.6	23.30	28.7	25.9	29.1	24.3	20.5	23.4	26.7	29	-
Potassium	mg/L	85	93	78.2	54.7	76.7	49.7	39.8	46.2	50.9	57.2	57.1	57	52.3	42.4	47.6	48.4	51.7	-
Sulphate	mg/L	49	45	82	67	46	37	42	68.6	53	27.6	24.5	20	25	24	27	27	20	500.0
Ammonia	mg/L	24	24	8.69	8	23.5	17.3	7.43	11.7	7.82	16.3	13.4	16.7	11.2	12.2	13.4	10.8	10.1	-
Nitrate as N	mg/L	0.97	14.9	15.2	0.7	1.1	<0.1	0.2	<0.5	22.6	1.8	<0.5	< 0.03	1.31	0.29	1.57	0.82	5.73	10
Nitrite as N	mg/L	0.08	0.406	1.44	<0.05	< 0.05	< 0.05	0.33	<0.5	<1.0	<1.0	<0.5	0.91	<0.3	< 0.03	< 0.03	< 0.3	< 0.3	1
Total Kjeldahl Nitrogen	mg/L	28 <0.001	25	11.8	10	25.5 0.009	16.2 <0.001	8.8 <0.001	12.6	8.2 0.002	18.1 0.003	15.4 0.003	19.6 < 0.002	12.3	12.2	14.3 0.012	11.2 0.002	9.63 < 0.002	-
Phenolics Dissolved Organic Carbon	mg/L mg/L	<0.001 32	<0.001 34	0.009 33.3	<0.001 18.1	0.009 32	<0.001 21.3	<0.001 19.5	0.001 20.4	0.002 16	0.003 22.4	0.003 25.4	< 0.002	0.005 18	0.002	0.012	0.002 17	< 0.002	- 5
Chemical Oxygen Demand	mg/L	670	91	145	67	95	21.3 81	19.5 87	20.4 51	49	61	23.4 45	48	52	48	50	42	33	-
Iron	mg/L	7.1	0.27	<0.1	<0.1	<0.1	<0.1	<0.1	0.064	<0.010	0.031	0.049	0.023	0.019	0.02	0.044	0.037	0.021	0.3
Manganese	mg/L	3.1	2.5	0.973	0.922	5.72	6.12	4.02	2.88	4.34	2.14	2.02	3.10	2.34	1.63	2.26	2.36	1.80	0.05
Phosphorus	mg/L	4.4	0.12	0.2	0.05	0.05	0.09	0.14	0.08	0.36	<0.02	0.06	0.08	< 0.03	0.04	< 0.03	0.05	< 0.03	-
Orthophosphate	mg/L	-	-	-	-	-	-	-	-	-	<2.0	-	-	-	< 0.03	-	< 0.03	< 0.03	-
Turbidity	NTU	1600	28	147	22.9	34.6	101	175	6.6	31.0	60.8	9.1	1.5	1.84	10.5	5.1	25	4.3	5
Total Suspended Solids	mg/L	5800	380	516	123	90	228	312	328	132	115	43	47	53	175	71	204	313	-
BOD	mg/L	<2	<2	23	<2	3	4	4	<5	<5	<5	<2	4	<4	< 4	< 4	< 4	10	-
Anion Sum	-	19.4	20	20.4	16.4	23.1	15.2	13.8	-	-	-	-	-	-	-	-	-	-	-
Cation Sum	-	20.1	21.7	21.2	15.3	19.1	12.7	10.7	-	-	-	-	-	-	-	-	-	-	-
Ion Balance	%	1.7	4.09	1.9	-3.3	-9.4	-9.2	-12.5	-	-	-	-	-	-	-	-	-	-	-
Silver	mg/L	<0.0001 0.071	<0.0001 0.046	<0.0001 0.038	<0.0001 0.024	<0.0001 0.033	<0.0001 0.031	<0.0001 0.045	<0.002 0.04	<0.002 0.032	<0.0001 0.048	<0.0001 0.036	< 0.00005	<0.00005 0.026	< 0.00005 0.032	< 0.00005 0.035	0.00005	< 0.00005	- 0.1
Aluminum Antimony	mg/L mg/L	<0.0005	< 0.046	< 0.0005	<0.024	<0.0005	< 0.0005	< 0.0005	<0.003	<0.0032	<0.048	< 0.036	0.028	<0.026	< 0.0009	< 0.0009	< 0.029	0.031	0.006
Arsenic	mg/L	<0.000	<0.001	0.002	0.001	<0.000	<0.001	<0.000	<0.003	<0.003	<0.001	<0.001	0.0008	0.0025	0.0003	0.0015	0.0006	0.0006	0.000
Barium	mg/L	0.3	0.33	0.276	0.183	0.262	0.122	0.146	0.225	0.279	0.276	0.236	0.29	0.243	0.21	0.254	0.226	0.299	1.00
Beryllium	mg/L	< 0.0005	<0.0005	< 0.0005	<0.0005	< 0.0005	< 0.0005	< 0.0005	<0.001	< 0.001	<0.0005	< 0.0005	0.00001	0.000015	0.000017	0.000014	0.000024	0.000013	-
Bismuth	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.002	<0.002	<0.002	< 0.00001	<0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	-
Boron	mg/L	1.8	2.1	2.05	1.09	1.4	0.577	1.2	1.16	1.28	1.29	1.47	1.05	1.11	0.966	1.29	1.01	1.19	5
Cadmium	mg/L	<0.0001	<0.0001	0.0002	<0.0001	<0.0001	<0.0001	<0.0001	<0.001	<0.001	<0.0001	<0.0001	0.000075	0.000061	0.000039	0.000066	0.000072	0.000074	0.005
Chromium	mg/L	<0.005	<0.005	0.049	0.003	0.002	0.001	0.002	<0.003	<0.003	<0.002	<0.002	0.00146	0.00125	0.00136	0.00134	0.00123	0.00169	0.05
Cobalt	mg/L	0.0096	0.0064	0.0032	0.0021	0.0044	0.0031	0.0028	0.004	0.0040	0.0025	0.0023	0.0033	0.00283	0.00256	0.00303	0.00282	0.00299	-
Copper	mg/L	0.0056	0.08	0.0366	0.0148	0.0179	0.0141	0.0168	0.007	0.0100	0.01	0.007	0.0077	0.0076	0.0092	0.0098	0.0124	0.009	1
Molybdenum	mg/L	0.0061	0.0065	0.0019	0.0012	0.0017	0.0014	0.0019	<0.002	< 0.002	< 0.002	< 0.002	0.0012	0.00116	0.00097	0.00169	0.00175	0.00108	-
Nickel Phosphate	mg/L mg/L	0.012	0.043	0.012	0.007 <0.2	0.005 <0.2	0.004 <0.2	0.004	<0.003 <1.0	0.006 <2.0	0.003	<0.003 <1.0	0.0024	0.0021	0.0019	0.0022	0.0029	0.0026	-
Lead	mg/L mg/L	- <0.0005	- <0.0005	<0.0002	<0.2	<0.2	<0.2	0.0002	<0.001	<2.0	- <0.0005	<0.0005	< 0.00009	- <0.00009	< 0.00009	- < 0.00009	- < 0.00009	- < 0.00009	- 0.01
Selenium	mg/L	<0.0003	<0.0003	0.004	0.003	<0.001	<0.001	<0.001	<0.001	0.006	<0.0005	<0.0005	0.00009	0.00009	0.00009	0.00033	0.00029	0.00009	0.01
Sillicon	mg/L	5.3	4.7	4.37	3.92	4.7	3.89	3.24	4.44	4.66	3.67	3.89	5.11	4.95	4.12	5.06	3.55	4.84	-
Tin	mg/L	<0.001	<0.001	< 0.005	< 0.005	<0.005	< 0.005	<0.005	<0.002	1.06	<0.002	< 0.002	0.00011	0.00009	0.00031	0.00009	0.00033	0.00016	<u> </u>
Strontium	mg/L	0.8	0.85	0.943	0.628	0.95	0.614	0.503	0.793	<0.002	0.783	0.601	1.01	0.8	0.592	0.794	0.753	0.901	1 -
Titanium	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.002	0.002	<0.002	0.005	0.00127	0.00077	0.001	0.0009	0.00097	0.0009	<u> </u>
Uranium	mg/L	0.0081	0.011	0.0083	0.0057	0.0072	0.0043	0.0046	0.007	0.0050	0.005	0.004	0.00487	0.00347	0.00291	0.0052	0.00551	0.00423	0.02
Vanadium	mg/L	<0.0005	0.0005	0.0131	0.0012	0.0005	<0.0005	<0.0005	<0.002	<0.002	<0.002	<0.002	0.00041	0.00041	0.00056	0.00043	0.0004	0.00051	-
Zinc	mg/L	0.012	0.036	0.021	0.023	0.012	0.008	0.013	<0.005	0.006	<0.005	<0.005	0.003	0.005	0.009	0.003	0.005	0.003	5
Field Measurements	· · · ·				r				· · · · · ·				-		-		-		
Temperature	oC	-	-	-	-	-	-	-	11.7	13.5	8.3	11.83	8.83	13.2	6.4	10.3	6.3	12.9	-
pH Os dusti itu	pH Units	6.25	6.43	5.71	6.88	6.86	7.18	7.28	6.49	6.58	6.88	6.61	6.46	6.47	16.22	6.73	5.89	6.6	6.5-8.5
Coductivity Ovidation Reduction Retential	uS/cm	1715	1481	1913	-	-	1.52	1.24	1935	2120	2184	1521	1456	1850	1073	1512	1290	2061	<u>↓ ·</u>
Oxidation Reduction Potential	mV mg/l	-	-	-	-	-	-	-	129.1	134.9	50.7	126	64.3	109.7	74	107.3	145	100.3	<u> </u>
Dissolved Oxygen Notes:	mg/L	-	-	-	-	-	-	-	1.61	4.25	5.44	7.29	17.77	0.87	1.5	3.12	3.39	5.56	-

Notes:

Ontario Drinking Water Quality Standards - Ontario Regulation 169/03 "Ontario Drinking Water Quality Standards" under the Safe Drinking Water Act", dated 2002, and "Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines", dated June 2003.

BOLD Exceed

ODWQS

INSV Insufficient volume to allow for sampling

NC Not Calculated

CNL Could Not Locate

- Data not available LS Limited Sample

TABLE 7 Groundwater Quality Results - BH-11 Croft Waste Disposal Site Magnetawan, Ontario

									Sa	ample Designati	on								T
Parameter	Units								Sample Co	llection Date (m	m/dd/yyyy)								ODWQS
Falalleter	Units									BH-11									ODWQ3
		6-Aug-15	22-Oct-15	13-Oct-16	18-May-17	25-Oct-17	2-May-18	17-Oct-18	11-Jun-19	25-Sep-19	2-Jun-20	1-Oct-20	12-May-21	7-Oct-21	4-May-22	18-Oct-22	10-May-23	28-Sep-23	
pH Lab	pH Units	6.81	6.97	5	5.2	6.2	6.3	6.4	7.32	7.32	7.36	7.41	7.75	7.81	7.68	7.40	7.48	7.28	6.5-8.5
Conductivity	uS/cm	550	600	1590	1130	1500	1880	825	1730	1620	2530	1420	2540	1390	944	305	345	227	-
Hardness	mg/L	140 340	190 330	171 928	77 700	211 926	250 1010	140 466	245 1000	225 828	411 1300	237 836	367 1400	210 627	152 580	49.1 163	55.4 226	39.4 171	80-100 500
Total Dissolved Solids Alkalinity	mg/L mg/L	50	82	920	18	79	498	58	439	294	542	484	872	380	321	54	75	48	30-500
Chloride	mg/L	63	67	286	242	275	168	67	200	123	237	178	230	150	79	43	42	25	250
Sodium	mg/L	41	30	215	160	192	187	63.4	184	136	209	150	233	147	96.5	23	33	25	200
Calcium	mg/L	40	58	52.4	22.9	33.1	59.7	32.6	65.3	64.6	119.0	68.5	104.0	61.5	44.1	14.7	16.8	12.2	-
Magnesium	mg/L	8.8	11	9.75	4.93	31.3	24.6	14.3	19.90	15.5	27.70	15.90	26.40	13.80	10.3	3.03	3.28	2.15	-
Potassium	mg/L	5.6	4.9	39	22.2	79.4	59.7	29.1	67.90	56.5	82.30	55.20	91.90	61.00	40.5	11.80	13.60	10.30	-
Sulphate	mg/L	86	91	258	165	243	213	194	115	83.7	118	85	68	59	65	28	41	25	500.0
Ammonia	mg/L	<0.05	0.06	6.37	4.55	17.5	48	3.58	32.30	28.40	29.90	26.20	53.10	34.10	18.8	3.74	2.98	1.14	-
Nitrate as N	mg/L	4.58	2.06	18.5	1.6	3.2	0.1	8.7	<0.5	42.0	36.6	<0.25	< 0.3	12.1	0.56	0.9	0.3	0.1	10
Nitrite as N	mg/L	0.031	0.019	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.5	<0.25	<1.0	<0.25	< 0.06	0.24	0.04	< 0.03	< 0.03	< 0.03	1
Total Kjeldahl Nitrogen	mg/L	0.85	0.6	8.4	6.7	22.8	44.9	5	41.5	32.80	38.4	30.3	70	37.1	21	4.62	3.84	1.9	-
Phenolics	mg/L	<0.001	<0.001	0.013	<0.001	0.011	0.011	<0.001	0.005	0.006	0.009	0.004	0.006	0.002	0.004	0.006	0.004	< 0.002	-
Dissolved Organic Carbon Chemical Oxygen Demand	mg/L mg/L	4.8 32	3.8 23	23.1 98	20.8 114	40.6 129	90.2 266	8.5 54	78.3 224	58.8 152	75.2 192	109.0 200	108.0 244	54.0 139	51 128	15.0 39	17.0 55	16.0 49	5
Iron	mg/L	<0.1	<0.1	90 <0.1	<0.1	<0.1	0.78	<0.1	1.42	0.079	0.126	0.719	5.68	0.231	0.229	0.141	0.33	0.834	0.3
Manganese	mg/L	0.39	0.38	6.1	2.1	5.68	5.03	2.09	3.23	1.88	3.74	2.11	4.69	1.81	1.24	0.40	0.33	0.33	0.05
Phosphorus	mg/L	0.98	1	0.2	0.19	0.08	0.21	0.02	0.10	0.07	0.03	0.14	0.06	0.04	< 0.03	0.06	0.29	0.07	-
Orthophosphate	mg/L	-	-	-	-	-	-	-	-	-	<2.0	-	-	-	0.03	-	0.04	< 0.03	-
Turbidity	NTU	1100	270	713	64.4	139	119	29.1	88.4	41.7	18.4	44.6	30.3	8.7	8.54	7.2	40.0	16.0	5
Total Suspended Solids	mg/L	600	1600	846	170	216	345	50	164	103	62	65	40	53	29	77	28	25	-
BOD	mg/L	<2	<2	ND (12)	<20	<20	<20	<2	<5	<5	<5	3	20	<4	< 4	6	< 4	8	-
Anion Sum	-	4.9	5.58	14.9	10.7	14.6	19.1	7	-	-	-	-	-	-	-	-	-	-	-
Cation Sum	-	4.69	5.24	13.8	9.07	14.6	14.7	6.3	-	-	-	-	-	-	-	-	-	-	-
Ion Balance	%	2.15	3.1	-3.8	-8.3	<0.1	-13.1	-9.9	-	-	-	-	-	-	-	-	-	-	<u> </u>
Silver	mg/L	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	0.0001	<0.0001	< 0.002	< 0.002	< 0.0001	< 0.0001	0.00009	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	-
Aluminum	mg/L	0.13 <0.0005	0.1 <0.0005	1.9 <0.0005	2.07 <0.0005	0.036	0.563 <0.0005	0.18 <0.0005	0.459 <0.003	0.236 <0.003	0.226 <0.001	0.754 <0.001	0.451 < 0.0009	0.236 <0.0009	0.358 < 0.0009	0.159 < 0.0009	0.298 < 0.0009	0.262 < 0.0009	0.1
Antimony Arsenic	mg/L mg/L	<0.0005	<0.0005	<0.0005	<0.0003	<0.0005	0.003	<0.0003	<0.003	<0.003	<0.001	<0.001	0.0019	0.0009	0.0009	0.0003	0.0004	0.0007	0.008
Barium	mg/L	0.12	0.11	0.093	207	0.269	0.053	0.034	0.106	0.067	0.129	0.154	0.158	0.074	0.0597	0.023	0.031	0.036	1.00
Beryllium	mg/L	<0.0005	<0.0005	0.0008	0.0006	< 0.0005	<0.0005	<0.0005	<0.001	< 0.001	< 0.0005	<0.0005	0.000074	0.000043	0.000043	0.000023	0.000046	0.000031	-
Bismuth	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.002	< 0.002	< 0.002	< 0.002	< 0.00001	<0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	-
Boron	mg/L	0.48	0.37	2.32	1.1	1.44	1.63	1.71	3.15	2.41	2.72	2.63	2.65	1.88	1.25	0.49	0.52	0.44	5
Cadmium	mg/L	0.00031	0.00018	0.0005	0.0009	<0.001	0.0004	0.0002	<0.001	<0.001	0.0002	0.0003	0.000279	0.000111	0.000097	0.000031	0.000041	0.000041	0.005
Chromium	mg/L	<0.005	<0.005	0.016	0.003	0.002	0.004	0.001	0.005	0.004	0.003	0.004	0.00528	0.00283	0.0026	0.00089	0.00134	0.00114	0.05
Cobalt	mg/L	0.00062	<0.0005	0.0444	0.0167	0.0044	0.0374	0.0039	0.021	0.006	0.0096	0.0069	0.0318	0.00727	0.00594	0.000988	0.00173	0.00203	-
Copper	mg/L	0.0041	0.0044	0.0137	0.0064	0.0174	0.0114	0.004	0.012	0.024	0.011	0.018	0.006	0.013	0.0093	0.004	0.005	0.004	1
Molybdenum	mg/L	0.001	0.0032	<0.0005	<0.0005	0.0017	0.0016	0.0005	< 0.002	0.004	0.003	0.004	0.00419	0.00527	0.00225	0.00101	0.00086	0.001	· ·
Nickel	mg/L	0.0056	0.0021	0.012	0.011	0.005	0.011	0.003	0.007	0.007	0.008	0.007	0.0124	0.0066	0.0051	0.0013	0.0018	0.0019	-
Phosphate	mg/L	- <0.0005	- <0.0005	<0.0002 0.0001	<0.2 0.0001	<0.2 <0.0001	<0.2 <0.0001	<0.2 <0.0001	<1.0 <0.001	<0.50 <0.001	- <0.0005	<0.50 <0.0005	< 0.03 0.00013	- <0.00009	- < 0.00009	- < 0.00009	- < 0.00009	- 0.0001	- 0.01
Lead Selenium	mg/L mg/L	<0.0005	<0.0005	0.0001	<0.001	<0.0001	0.0001	0.0001	<0.001	<0.001	<0.0005	<0.0005	0.00013	<0.00009	< 0.00009	< 0.00009	< 0.00009 0.00047	0.0001	0.01
Sillicon	mg/L	5.3	5.7	4.42	3.42	4.76	1.32	1.24	2	1	2	2	2	1	1.54	2	1	2	-
Tin	mg/L	<0.001	<0.001	<0.005	<0.005	<0.005	<0.005	<0.005	<0.002	0.127	<0.002	<0.002	0.00024	0.00014	0.00013	< 0.00006	0.00013	0.0001	1 -
Strontium	mg/L	0.16	0.21	0.057	0.089	0.956	0.136	0.084	0.177	<0.002	0.272	0.175	0.268	0.140	0.109	0.037	0.053	0.041	1 -
Titanium	mg/L	< 0.005	<0.005	<0.005	<0.005	< 0.005	0.008	<0.005	0.006	0.005	<0.002	0.021	0.01066	0.00447	0.00423	0.00148	0.00469	0.0024	· 1
Uranium	mg/L	0.0015	0.0034	0.0024	0.0012	0.0072	0.0034	0.0006	0.006	0.003	0.0075	0.0052	0.00783	0.00448	0.00222	0.000358	0.000588	0.000598	0.02
Vanadium	mg/L	<0.0005	<0.0005	0.0038	0.0015	0.0005	0.0009	<0.0005	<0.002	<0.002	<0.002	<0.002	0.00283	0.00058	0.00085	0.00017	0.00047	0.00073	-
Zinc	mg/L	0.0059	0.0076	0.022	0.062	0.007	0.024	0.009	0.010	0.012	0.005	0.008	0.010	0.004	0.004	< 0.002	< 0.002	0.003	5
Field Measurements								•								•			
Temperature	оС	-	-	-	-	-	-	-	11.1	15	10.9	13.07	8.27	14.4	7.9	10.9	8		<u> </u>
pH	pH Units	6.01	5.22	5.43	5.09	5.85	6.8	8.06	6.6	6.3	6.6	6.5	6.3	6.4	16.2	6.5	6.0		6.5-8.5
Coductivity	uS/cm	473	233	1475	-	-	1.35	0.85	1972	1305	2289	1139	1650	1170	684	225	235	l	<u> </u>
Oxidation Reduction Potential	mV	-	-	-	-	-	-	-	129.2	83.7	120.7	172	38.7	97.4	85.6	93	88.2	l	<u> </u>
Dissolved Oxygen Notes:	mg/L	-	-	-	-	-	-	-	1.96	1.26	1.8	6.47	2.96	0.9	1.79	1.16	4	1	-

Ontario Drinking Water Quality Standards - Ontario Regulation 169/03 "Ontario Drinking Water Quality Standards" under the Safe Drinking Water Act", dated 2002, and "Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines", dated June 2003.

BOLD

ODWQS

INSV Insufficient volume to allow for sampling

NC Not Calculated

CNL Could Not Locate

- Data not available

LS Limited Sample

TABLE 8 Groundwater Quality Results - DP-7 Croft Waste Disposal Site Magnetawan, Ontario

									ample Designation								Τ
Parameter	Units							Sample Co		m/aa/yyyy)							ODWQS
			00.0.45	10.0.1.10	40.04.47	05.0.1.47	44.1	05.0	DP-7	4.0.4.00	40.04	7.0.4.04	4.84. 00	40.0.4.00	40.00		_
		6-Aug-15	22-Oct-15	13-Oct-16	18-May-17	25-Oct-17	11-Jun-19	25-Sep-19	2-Jun-20	1-Oct-20	12-May-21	7-Oct-21	4-May-22	18-Oct-22	10-May-23	28-Sep-23	05.05
oH Lab	pH Units	DRY	DRY	DRY	DRY	DRY	6.49	6.71	INSV	INSV	INSV	Water	Water	INSV	Water	Water	6.5-8.5
Conductivity	uS/cm	-	-	-	-	-	41	122	-	-	-	level	Level	-	Level	Level	
Hardness	mg/L	-	-	-	-	-	15.2	48	-	-	-	only	Only	-	Only	Only	80-100
Total Dissolved Solids	mg/L	-	-	-	-	-	114	78	-	-	-	-	-	-	-	-	500
Alkalinity	mg/L	-	-	-	-	-	9	36	-	-	-	-	-	-	-	-	30-500
Chloride	mg/L	-	-	-	-	-	2.06	0.6	-	-	-	-	-	-	-	-	250
Sodium	mg/L	-	-	-	-	-	1.68	2.8	-	-	-	-	-	-	-	-	200
Calcium	mg/L	-	-	-	-	-	4.6	13.5	-	-	-	-	-	-	-	-	-
Magnesium	mg/L	-	-	-	-	-	0.90	3.47	-	-	-	-	-	-	-	-	-
Potassium	mg/L	-	-	-	-	-	0.16	0.27	-	-	-	-	-	-	-	-	-
Sulphate	mg/L	-	-	-	-	-	7.5	15.9	-	-	-	-	-	-	-	-	500
Ammonia	mg/L	-	-	-	-	-	0.48	<0.02	-	-	-	-	-	-	-	-	-
Nitrate as N	mg/L	-	-	-	-	-	0.06	0.07	-	-	-	-	-	-	-	-	10
Nitrite as N	mg/L	-	-	-	-	-	< 0.05	<0.05	-	-	-	-	-	-	-	-	1
Total Kjeldahl Nitrogen	mg/L	-	-	-	-	-	1.14	1.69	-	-	-	-	-	-	-	-	-
Phenolics	mg/L	-	-	-	-	-	0.004	0.001	-	-	-	-	-	-	-	-	-
Dissolved Organic Carbon	mg/L	-	-	-	-	-	8.5	5.3	-	-	-	-		-	-	-	5
Chemical Oxygen Demand	mg/L	-	-	-	-	-	0.5 33	156	-	-	-	-	-	-	-	-	-
,0	•							0.342			-	-	-				
Iron	mg/L	-	-	-	-	-	7.26		-	-				-	-	-	0.3
Manganese	mg/L	-	-	-	-	-	0.549	0.082	-	-	-	-	-	-	-	-	0.05
Phosphorus	mg/L	-	-	-	-	-	0.54	3.78	-	-	-	-	-	-	-	-	-
Orthophosphate	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Turbidity	NTU	-	-	-	-	-	1100	6240	-	-	-	-	-	-	-	-	5
Total Suspended Solids	mg/L	-	-	-	-	-	7060	3780	-	-	-	-	-	-	-	-	-
BOD	mg/L	-	-	-	-	-	7	<5	-	-	-	-	-	-	-	-	-
Anion Sum	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cation Sum	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ion Balance	%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Silver	mg/L	-	-	-	-	-	< 0.002	< 0.002	-	-	-	-	-	-	-	-	-
Aluminum	mg/L	-	-	-	-	-	0.325	0.392	-	-	-	-	-	-	-	-	0.1
Antimony	mg/L	-	-	-	-	-	< 0.003	< 0.003	-	-	-	-	-	-	-	-	0.006
Arsenic	mg/L	-	-	-	-	-	< 0.003	<0.003	-	-	-	-	-	-	-	-	0.010
Barium	mg/L	-	-	-	-	-	0.011	0.010	-	-	-	-	-	-	-	-	1
Beryllium	mg/L	-	-	-	-	-	< 0.001	<0.001	-	-	-	-	-	-	-	-	
Bismuth	mg/L	-	-	-	-	-	<0.001	<0.001	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-		0.086	-		-		-				5
Boron	mg/L						0.129							-	-	-	
Cadmium	mg/L	-	-	-	-	-	< 0.001	< 0.001	-	-	-	-	-	-	-	-	0.005
Chromium	mg/L	-	-	-	-	-	< 0.003	< 0.003	-	-	-	-	-	-	-	-	0.05
Cobalt	mg/L	-	-	-	-	-	0.004	< 0.001	-	-	-	-	-	-	-	-	· ·
Copper	mg/L	-	-	-	-	-	<0.003	< 0.003	-	-	-	-	-	-	-	-	1
Molybdenum	mg/L	-	-	-	-	-	<0.002	<0.002	-	-	-	-	-	-	-	-	-
Nickel	mg/L	-	-	-	-	-	0.004	<0.003	-	-	-	-		-	-	-	-
Phosphate	mg/L	-	-	-	-	-	<0.10	<0.10	-	-	-	-	-	-	-	-	-
Lead	mg/L	-	-	-	-	-	<0.001	<0.001	-	-	-	-	-	-	-	-	0.01
Selenium	mg/L	-	-	-	-	-	< 0.004	< 0.004	-	-	-	-	-	-	-	-	0.05
Sillicon	mg/L	-	-	-	-	-	4.36	5.43	-	-	-	-	-	-	-	-	<u> </u>
Tin	mg/L	-	-	-	-	-	<0.002	0.056	-	-	-	-	-	-	-	-	-
Strontium	mg/L	-	-	-	-	-	0.031	<0.002	-	-	-	-	-	-	-	-	-
Titanium	mg/L	-	-	-	-	-	0.004	0.014	-	-	-	-	-	-	-	-	-
Uranium	mg/L	-	-	-	-	-	< 0.002	<0.002	-	-	-	-	-	-	-	-	0.02
Vanadium	mg/L	-	-	-	-	-	0.004	0.004	-	-	-	-	-	-	-	-	-
Zinc	mg/L	-	-	-	-	-	0.013	0.004	-	-	-	-	-	-	-	-	5
Field Measurements	ing/∟	-	-	-	-	-	0.013	0.000	-	-	-	-	-	-	-	-	<u> </u>
							10.4	14.8									T
	oC	-	-	-	-	-	13.1		-	-	-	-	-	-	-	-	-
pH	pH Units	-	-	-	-	-	6.48	6.33	-	-	-	-	-	-	-	-	6.5-8.5
Coductivity	uS/cm	-	-	-	-	-	82.9	76.7	-	-	-	-	-	-	-	-	-
Oxidation Reduction Potential	mV	-	-	-	-	-	149.3	113.5	-	-	-	-	-	-	-	-	-
Dissolved Oxygen	mg/L	-	-	-	-	-	7.75	7.31	-	-	-	-	-	-	-	-	-

Notes:

ODWQS Ontario Drinking Water Quality Standards - Ontario Regulation 169/03 "Ontario Drinking Water Quality Standards" under the Safe Drinking Water Act", dated 2002, and "Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines", dated June 2003.
BOLD Exceeds ODWQS

INSV Insufficient volume to allow for sampling

NC Not Calculated

CNL Could Not Locate

- Data not available

LS Limited Sample

TABLE 9 Groundwater Quality Results - BH-12 Croft Waste Disposal Site Magnetawan, Ontario

						esignation				
Parameter	Units			Sa	mple Collection	Date (mm/dd/yy	уу)			ODWQS
i diameter	onno		1	T		1-12	1	1	1	obiido
		2-Jun-20	1-Oct-20	12-May-21	7-Oct-21	4-May-22	18-Oct-22	10-May-23	28-Sep-23	
pH Lab	pH Units	7.09	6.70	7.35	7.65	7.6	7.50	7.55	7.38	6.5-8.5
Conductivity	uS/cm	266	205	152	182	158	153	136	162	-
Hardness	mg/L	91.9	80.9	61.9	78.5	67.6	68.9	54.1	64	80-100
Total Dissolved Solids	mg/L	134	116	97	147	131	100	91	109	500
Alkalinity	mg/L	92	97	56	70	67	64	51	61	30-500
Chloride	mg/L	6	9	4	9	5	5	5 4	6	250
Sodium	mg/L	15	12	5	6	6.12	5		6	200
Calcium	mg/L	30.9	27.6 2.92	20.9 2.36	27.3	23.4 2.21	24.1	18.1	22.2 2.11	-
Magnesium	mg/L	3.59 7.87	3.00	1.30	2.50 1.60	1.15	2.13 1.27	2.13 1.03	1.26	-
Potassium Sulphate	mg/L	12	3.00	8	9	1.15	9	1.03	1.26	500.0
Ammonia	mg/L mg/L	0.25	0.11	0.08	0.08	0.06	0.08	0.04	0.06	500.0
	-	<0.05	0.1	< 0.03	0.08	< 0.06	< 0.06	0.04	< 0.06	- 10
Nitrate as N Nitrite as N	mg/L mg/L	<0.05	<0.05	< 0.03	<0.03	< 0.08	< 0.08	< 0.03	< 0.08	10
Total Kjeldahl Nitrogen	mg/L	<0.05 0.45	0.3	0.17	0.1	0.12	0.08	0.18	0.18	_
Phenolics	mg/L	0.001	<0.001	< 0.002	<0.002	< 0.002	< 0.002	< 0.002	< 0.002	
Dissolved Organic Carbon	mg/L	4.7	4.9	4.0	4.0	< 0.002 4	4.0	3.0	3.0	5
Chemical Oxygen Demand	mg/L	10	<5	10	9	9	10	< 8	9	-
Iron	mg/L	1.91	3.8	1.56	1.19	1.49	1.25	0.609	1.37	0.3
Manganese	mg/L	1.18	0.42	0.38	0.38	0.369	0.37	0.28	0.32	0.05
Phosphorus	mg/L	0.43	0.80	0.24	0.06	0.1	0.08	0.27	0.32	-
Orthophosphate	mg/L	<0.10	-	-	-	0.03	-	< 0.03	0.06	-
Turbidity	NTU	406	550	107	11	5.55	60	223	160	5
Total Suspended Solids	mg/L	316	1500	931	153	239	271	717	805	-
BOD	mg/L	<5	<2	< 10	<4	< 4	< 4	< 4	< 4	-
Anion Sum	-	-	-	-	-	-	-	-	-	-
Cation Sum	-	-	-	-	-	-	-	-	-	-
Ion Balance	%	-	-	-	-	-	-	-	-	-
Silver	mg/L	<0.0001	<0.0001	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	-
Aluminum	mg/L	0.117	1.340	0.054	0.038	0.05	0.041	0.049	0.046	0.1
Antimony	mg/L	<0.001	<0.001	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009	0.006
Arsenic	mg/L	<0.001	0.002	0.0007	0.0009	0.0006	0.0011	0.0003	0.0012	0.010
Barium	mg/L	0.067	0.057	0.044	0.048	0.0525	0.045	0.037	0.046	1.00
Beryllium	mg/L	<0.0005	<0.0005	0.000043	0.000045	0.000034	0.000042	0.000048	0.000033	-
Bismuth	mg/L	<0.002	<0.002	< 0.00001	<0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	-
Boron	mg/L	0.16	0.07	0.05	0.08	0.117	0.09	0.07	0.10	5
Cadmium	mg/L	<0.0001	<0.0001	0.000006	0.000014	0.000007	0.000004	0.000025	0.000007	0.005
Chromium	mg/L	<0.002	<0.002	0.00029	0.00023	0.0003	0.00027	0.00025	0.00037	0.05
Cobalt	mg/L	0.0008	<0.0005	0.00009	0.000106	0.00019	0.000161	0.000097	0.000227	-
Copper	mg/L	<0.001	0.002	< 0.0002	0.001	0.0019	0.000	0.001	0.002	1
Molybdenum	mg/L	0.005	<0.002	0.00088	0.00104	0.00075	0.00096	0.0008	0.00139	-
Nickel	mg/L	<0.003	<0.003	0.0003	0.0003	0.0005	0.0002	0.0002	0.0006	-
Phosphate	mg/L	-	<0.10	0.11	-	-	-	-	-	-
Lead	mg/L	<0.0005	0.0008	< 0.00009	<0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	0.01
Selenium	mg/L	<0.001	<0.001	< 0.00004	<0.00004	< 0.00004	0.00004	0.00014	0.00005	0.05
Sillicon	mg/L	5	8	6	6	4.69	6	4	5	-
Tin	mg/L	<0.002	<0.002	< 0.00006	<0.00006	0.00014	< 0.00006	0.00012	0.00011	-
Strontium	mg/L	0.089	0.096	0.105	0.124	0.113	0.117	0.078	0.094	-
Titanium	mg/L	0.004	0.144	0.00083	0.000109	0.00069	0.00074	0.00079	0.00058	-
Uranium	mg/L	0.0012	0.0007	0.000193	0.000191	0.000195	0.000199	0.00017	0.000306	0.02
Vanadium 	mg/L	<0.002	<0.002	0.00037	0.00034	0.00042	0.00039	0.0003	0.00052	-
Zinc	mg/L	<0.005	0.012	< 0.002	0.003	0.004	< 0.002	< 0.002	0.003	5
Field Measurements										1
Temperature	oC	7.8	11.3	6.65	13.4	6.4	9.4	7.6	11.8	-
pH	pH Units	6.7	6.6	6.1	6.3	16.2	6.6	6.1	6.4	6.5-8.5
Coductivity	uS/cm	272	158	76	154	107	114	103	119	-
Oxidation Reduction Potential	mV	108.7	61.1	86	29.4	-0.7	59.4	66.5	92.6	-
Dissolved Oxygen	mg/L	1.15	7.55	5.05	1.06	1.19	5.2	2.23	0.78	-

Notes:

ODWQS

Ontario Drinking Water Quality Standards - Ontario Regulation 169/03 "Ontario Drinking Water Quality Standards" under the Safe Drinking Water Act", dated 2002, and "Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines", dated June 2003.

 BOLD
 Exceeds ODWQS

 INSV
 Insufficient volume to allow for sampling

 NC
 Not Calculated

 CNL
 Could Not Locate

 Data not available

 LS
 Limited Sample

TABLE 10Groundwater Quality Results - BH-13Croft Waste Disposal SiteMagnetawan, Ontario

						esignation				
Parameter	Units			Sa		Date (mm/dd/yy	уу)			ODWQS
i di difictor	onno	-			1	1-13			-	02.1.00
· · · · ·		2-Jun-20	1-Oct-20	12-May-21	7-Oct-21	4-May-22	18-Oct-22	10-May-23	28-Sep-23	
pH Lab	pH Units	7.32	6.74	7.42	7.41	7.22	7.09	7.10	7.47	6.5-8.5
Conductivity	uS/cm	291 103	206 108	90 43	130 50.5	88 36.6	152	59 24.8	207 85.9	- 80-100
Hardness	mg/L	103	108				41.6	24.8 54		500
Total Dissolved Solids	mg/L			60	120	83	60		120	
Alkalinity	mg/L	106 14	116 7	35 3	55 6	32 5	53 12	22	76 15	30-500 250
Chloride	mg/L	9	3	3	2	1.65	3	4	6	250
Sodium Calcium	mg/L mg/L	32.9	36.3	14.5	16.9	12.2	14.0	8.3	28.6	200
	mg/L	5.17	4.21	14.5	2.00	12.2	14.0	0.98	3.52	-
Magnesium Potassium	mg/L	5.82	2.45	0.95	1.47	0.721	0.77	0.58	1.26	-
Sulphate	mg/L	2	3	4	4	5	4	4	4	500.0
Ammonia	mg/L	0.08	0.48	0.04	0.37	< 0.04	0.30	< 0.04	0.09	500.0
Nitrate as N	mg/L	<0.05	<0.05	< 0.04	<0.06	< 0.04	0.30	< 0.04	< 0.09	10
Nitrite as N	mg/L	<0.05	< 0.05	< 0.05	<0.00	< 0.03	< 0.03	< 0.03	< 0.03	1
Total Kjeldahl Nitrogen	mg/L	2.52	0.92	0.17	0.56	0.08	0.65	0.22	0.38	
Phenolics	mg/L	0.006	0.92	< 0.002	<0.002	< 0.002	< 0.002	< 0.002	< 0.002	-
Dissolved Organic Carbon	mg/L	27.8	5.6	4.0	5.0	3	< 0.002 6.0	4.0	5.0	5
Chemical Oxygen Demand	mg/L	221.8	18	4.0	19	< 8	24	9	11	-
Iron	mg/L	7.29	2.26	0.245	1.48	0.144	0.341	0.146	0.416	0.3
Manganese	mg/L	0.695	0.515	0.184	0.212	0.129	0.192	0.062	0.412	0.05
Phosphorus	mg/L	31.90	8.74	0.90	3.46	0.17	3.73	0.28	0.06	-
Orthophosphate	mg/L	<0.10	-	-	-	0.03	-	< 0.03	< 0.03	-
Turbidity	NTU	28700	23200	42	43	28.6	2100	110	55	5
Total Suspended Solids	mg/L	39600	18600	1360	10300	590	7370	58	284	-
BOD	mg/L	35	2	< 10	<4	< 4	< 4	< 4	< 4	-
Anion Sum	-	-	-	-	-	-	-	-	-	-
Cation Sum	-	-	-	-	-	-	-	-	-	-
Ion Balance	%	-	-	_	_	-	-	_	-	-
Silver	mg/L	<0.0001	<0.0001	< 0.00005	0.00024	0.00006	< 0.00005	0.00011	< 0.00005	-
Aluminum	mg/L	0.134	0.070	0.084	0.502	0.117	0.092	0.128	0.051	0.1
Antimony	mg/L	<0.001	<0.001	< 0.0009	<0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009	0.006
Arsenic	mg/L	<0.001	<0.001	0.0008	0.0011	0.0003	0.0004	0.0003	0.0003	0.010
Barium	mg/L	0.041	0.054	0.037	0.048	0.0389	0.035	0.020	0.055	1.00
Beryllium	mg/L	<0.0005	< 0.0005	0.000043	0.000145	0.000056	0.000088	0.000072	0.000044	-
Bismuth	mg/L	< 0.002	< 0.002	< 0.00001	<0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	-
Boron	mg/L	0.05	0.03	0.01	0.04	0.015	0.08	0.02	0.07	5
Cadmium	mg/L	<0.0001	<0.0001	0.00005	0.000042	0.000056	0.000049	0.000078	0.000056	0.005
Chromium	mg/L	< 0.002	< 0.002	0.00033	0.00047	0.0004	0.00037	0.00044	0.00032	0.05
Cobalt	mg/L	0.0009	<0.0005	0.00026	0.000362	0.000232	0.000167	0.00014	0.000261	-
Copper	mg/L	<0.001	<0.001	0.003	0.005	0.009	0.005	0.008	0.007	1
Molybdenum	mg/L	0.006	< 0.002	0.00041	0.0003	0.00023	0.00019	0.00008	0.00021	-
Nickel	mg/L	<0.003	<0.003	0.0009	0.0008	0.001	0.0006	0.0005	0.0011	-
Phosphate	mg/L	-	<0.10	0.19	-	-	-	-	-	-
Lead	mg/L	<0.0005	<0.0005	< 0.00009	0.00045	< 0.00009	< 0.00009	< 0.00009	< 0.00009	0.01
Selenium	mg/L	<0.001	<0.001	0.00008	0.00011	0.00008	0.00014	0.00015	0.00015	0.05
Sillicon	mg/L	5.6	5.6	3.6	4.4	2.75	3.2	2.3	3.6	-
Tin	mg/L	<0.002	<0.002	< 0.00006	0.00006	0.00023	< 0.00006	0.00008	0.00006	-
Strontium	mg/L	0.087	0.062	0.034	0.035	0.0248	0.028	0.020	0.056	<u> </u>
Titanium	mg/L	<0.002	0.002	0.00153	0.0448	0.0019	0.00078	0.00194	0.00043	<u> </u>
Uranium	mg/L	0.002	0.0013	0.00365	0.00296	0.00253	0.00324	0.00279	0.00605	0.02
Vanadium	mg/L	<0.002	<0.002	0.0006	0.00171	0.00055	0.00045	0.00044	0.00043	-
Zinc	mg/L	<0.005	< 0.005	0.006	0.008	0.012	0.004	0.006	0.005	5
Field Measurements										
Temperature	oC	7.9	11.93	8.5	15	6.9	10.5	11.5	11.3	-
рН	pH Units	6.3	6.8	5.8	6.0	16.2	6.5	6.0	6.2	6.5-8.5
Coductivity	uS/cm	287	171	63	102	55	81	54	155	-
Oxidation Reduction Potential	mV	259	83.1	111.4	83	61	61.8	100.4	88.6	-
Dissolved Oxygen	mg/L	3.43	7.45	2.89	14.7	3.01	1.68	4.55	0.51	-

Notes:

ODWQS

Ontario Drinking Water Quality Standards - Ontario Regulation 169/03 "Ontario Drinking Water Quality Standards" under the Safe Drinking Water Act", dated 2002, and "Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines", dated June 2003.

 BOLD
 Exceeds ODWQS

 INSV
 Insufficient volume to allow for sampling

 CNL
 Could Not Locate

 Data not available

 LS
 Limited Sample

 Units
 All Units in mg/L Unless Otherwise Noted.

Pinchin File Number: 225335.007

TABLE 11 Groundwater Quality Results - BH-14 Croft Waste Disposal Site Magnetawan, Ontario

						esignation				
Parameter	Units			Sa		Date (mm/dd/yy	уу)			ODWQS
	••••••					1-14			-	
		2-Jun-20	1-Oct-20	12-May-21	7-Oct-21	4-May-22	18-Oct-22	10-May-23	28-Sep-23	
pH Lab	pH Units	7.01	6.69	7.67	7.63	7.67	7.61	7.61	7.60	6.5-8.5
Conductivity	uS/cm	472	408	406	305	409	234	389	229	-
Hardness	mg/L	106	130	135	106	160	93.1	157	94	80-100
Total Dissolved Solids	mg/L	288	256	306	207	143	143	260	226	500
Alkalinity	mg/L	67	118	86	84	90	81	80	78	30-500
Chloride	mg/L	87	73	56	41	66	21	67	21	250
Sodium	mg/L	31	27	14	11	11.3	6	9	6	200
Calcium	mg/L	31.3	39.8	41.0	33.4	51.1	29.7	49.2	29.6	-
Magnesium	mg/L	6.84	7.49	7.88	5.42	7.99	4.59	8.25	4.90	-
Potassium	mg/L	8.35	6.14	3.66	3.50	3.45	2.52	2.79	2.36	-
Sulphate	mg/L	4	7	19	17	29	12	25	8	500.0
Ammonia	mg/L	0.02	0.29	0.36	0.29	0.09	0.15	0.07	0.06	-
Nitrate as N	mg/L	<0.05	< 0.05	< 0.03	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	10
Nitrite as N	mg/L	<0.05	< 0.05	< 0.06	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	1
Total Kjeldahl Nitrogen	mg/L	0.98	0.96	0.5	0.46	0.16	0.29	0.19	0.15	<u> </u>
Phenolics	mg/L	0.003	<0.001	< 0.002	<0.002	< 0.002	< 0.002	< 0.002	< 0.002	
Dissolved Organic Carbon	mg/L	24.8	23.4	16.0	4.0	4	2.0	3.0	2.0	5
Chemical Oxygen Demand	mg/L	75	35	42	22	11	< 8	< 8	< 8	
Iron	mg/L	3.77	4.35	4.52	2.87	4.6	1.67	3.46	1.5	0.3
Manganese	mg/L	1.19	1.12	1.31	0.75	1.16	0.54	0.95	0.49	0.05
Phosphorus	mg/L	4.98	7.38	5.69	1.73	0.43	1.81	0.61	0.07	-
Orthophosphate	mg/L	<0.10	-	-	-	0.04	-	< 0.03	< 0.03	•
Turbidity	NTU	5920	6190	226	180	1010	750	200	80	5
Total Suspended Solids	mg/L	8970	4150	11400	710	1400	2850	545	684	-
BOD	mg/L	32	8	5	<4	< 4	< 4	< 4	< 4	-
Anion Sum	-	-	-	-	-	-	-	-	-	-
Cation Sum	-	-	-	-	-	-	-	-	-	-
Ion Balance	%	-	-	-	-	-	-	-	-	-
Silver	mg/L	<0.0001	<0.0001	< 0.00005	<0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	-
Aluminum	mg/L	0.144	0.083	0.207	0.051	0.087	0.051	0.021	0.006	0.1
Antimony	mg/L	<0.001	<0.001	< 0.0009	<0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009	0.006
Arsenic	mg/L	0.002	0.002	0.0006	0.0005	0.0004	0.0003	0.0003	0.0003	0.010
Barium	mg/L	0.103	0.109	0.093	0.061	0.0874	0.043	0.073	0.040	1.00
Beryllium	mg/L	<0.0005	<0.0005	0.000091	0.000056	0.000058	0.000031	0.000052	0.000023	-
Bismuth	mg/L	<0.002	<0.002	< 0.00001	<0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	-
Boron	mg/L	0.22	0.17	0.08	0.11	0.08	0.05	0.07	0.05	5
Cadmium	mg/L	<0.0001	<0.0001	< 0.000003	<0.00003	< 0.000003	0.000004	0.000009	< 0.000003	0.005
Chromium	mg/L	<0.002	<0.002	0.00043	0.00019	0.00024	0.00018	0.00025	0.00014	0.05
Cobalt	mg/L	0.0019	0.0016	0.00104	0.000525	0.000687	0.000283	0.000515	0.000293	-
Copper	mg/L	<0.001	0.001	0.001	0.000	0.0018	< 0.0002	0.000	0.001	1
Molybdenum	mg/L	<0.002	<0.002	0.00015	0.00044	0.00026	0.00056	0.00028	0.00046	<u> </u>
Nickel	mg/L	0.007	<0.003	0.0008	0.0004	0.0005	0.0001	0.0002	0.0004	<u> </u>
Phosphate	mg/L	-	<0.10	0.42	-	-	-	-	-	<u> </u>
Lead	mg/L	<0.0005	<0.0005	< 0.00009	<0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	0.01
Selenium	mg/L	<0.001	0.012	0.00012	0.00006	0.00005	< 0.00004	0.00008	< 0.00004	0.05
Sillicon	mg/L	4	8	11	9	10.6	11	9	10	
Tin	mg/L	<0.002	<0.002	0.00007	<0.00006	0.00013	< 0.00006	0.00007	< 0.00006	<u> </u>
Strontium	mg/L	0.161	0.154	0.209	0.144	0.208	0.124	0.235	0.128	-
Titanium	mg/L	<0.002	<0.002	0.00745	0.00156	0.00196	0.00112	0.00126	0.00022	-
Uranium	mg/L	0.0006	<0.0005	0.000581	0.000499	0.000153	0.000321	0.000428	0.000292	0.02
Vanadium	mg/L	<0.002	<0.002	0.00141	0.0007	0.00085	0.0003	0.00035	0.0002	-
Zinc	mg/L	<0.005	<0.005	0.002	0.003	0.003	< 0.002	< 0.002	< 0.002	5
Field Measurements										
Temperature	oC	7.7	12.7	7.03	15.2	6.1	10.2	6.4	11.6	-
рН	pH Units	6.4	6.3	16.1	6.6	16.2	6.9	5.4	6.6	6.5-8.5
Coductivity	uS/cm	442	332	243	270	263	168	271	176	<u> </u>
Oxidation Reduction Potential	mV	46.2	55.3	27.9	-25.2	-14.7	-18.8	120.9	92.3	-
Dissolved Oxygen	mg/L	1.12	6.95	3.84	0.69	1.04	1.02	2.21	0.5	-

Notes:

ODWQS

Ontario Drinking Water Quality Standards - Ontario Regulation 169/03 "Ontario Drinking Water Quality Standards" under the Safe Drinking Water Act", dated 2002, and "Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines", dated June 2003.

 BOLD
 Exceeds ODWQS

 INSV
 Insufficient volume to allow for sampling

 NC
 Not Calculated

 CNL
 Could Not Locate

 Data not available

 LS
 Limited Sample

TABLE 12B-7 Guideline Calculations - Spring 2023Croft Waste Disposal SiteMagnetawan, Ontario

Parameter	Units	Sample Designation Sample Collection Date (dd-mmm-yy)								Guideline B-7 Calculation Cm = Cb + x (Cr - Cb)			
		BH8 10-May-23	BH9 10-May-23	BH10 10-May-23	BH11 10-May-23	BH-12 10-May-23	BH-13 10-May-23	BH-14 10-May-23	ODWQS	Cb	x	Cr	Cm
Chloride	mg/L	2	41	410	42	5	4	67	250	6.5	0.5	250	128.3
Sulphate	mg/L	6	37	27	41	14	4	25	500	7.79	0.5	500	253.9
Sodium	mg/L	3	25	186	33	4	2	9	200	6	0.5	200	103.0
Boron	mg/L	0.004	0.55	1.01	0.52	0.07	0.02	0.07	5	0.03	0.25	5	1.27
Nitrate	mg/L	< 0.06	< 0.06	0.82	0.3	0.21	< 0.06	< 0.06	10	0.04	0.25	10	2.53
Alkalinity	mg/L	8	165	341	75	51	22	80	30-500	42	0.5	30-500	35.9-270.9
Dissolved Organic Carbon	mg/L	4	19	17	17	3	4	3	5	13	0.5	5	NC
Total Dissolved Solids	mg/L	37.0	314	991	226	91	54	260	500	111	0.5	500	305.3
Iron	mg/L	0.1	24.9	0.037	0.330	0.61	0.15	3.46	0.3	6.51	0.5	0.3	NC
Manganese	mg/L	0.00485	3.34	2.36	0.471	0.281	0.0621	0.953	0.05	0.998	0.5	0.10	NC

Notes:

ODWQS

Ontario Drinking Water Quality Standards - Ontario Regulation 169/03 "Ontario Drinking Water Quality Standards" under the Safe Drinking Water Act", dated 2002, and "Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines", dated June 2003.

BOLD	Exceeds Cm value.
NC	Not Calculated due to the background concentration being in exceedance of the ODWQS.
Units	All Units in mg/L Unless Otherwise Noted.
Cb	Background Concentration - average of valid sampling rounds at BH1
Cr	Maximum Acceptable Contaminant Concentration
x	Reduction Constant
Cm	Maximum Off-Site Acceptable Contaminant Concentration

TABLE 13 B-7 Guideline Calculations - Fall 2023 Croft Waste Disposal Site Magnetawan, Ontario

Parameter	Units	Sample Designation Sample Collection Date (dd-mmm-yy)							ODWQS	Guideline B-7 Calculation Cm = Cb + x (Cr - Cb)			
Farameter		BH8 28-Sep-23	BH9 28-Sep-23	BH10 28-Sep-23	BH11 28-Sep-23	BH-12 28-Sep-23	BH-13 28-Sep-23	BH-14 28-Sep-23	ODWQ3	Cb	x	Cr	Cm
Chloride	mg/L	< 1	52.0	560	25	6	15	21	250	7.3	0.5	250	128.7
Sulphate	mg/L	8	15	20	25	10	4	8	500	9.20	0.5	500	254.6
Sodium	mg/L	2	28	271	25	6	6	6	200	6.36	0.5	200	103.2
Boron	mg/L	0.012	0.58	1.19	0.44	0.10	0.07	0.05	5	0.03	0.25	5	1.27
Nitrate	mg/L	< 0.06	< 0.06	5.73	0.1	< 0.06	< 0.06	< 0.06	10	0.04	0.25	10	2.53
Alkalinity	mg/L	27	171	445	48	61	76	78	30-500	44	0.5	30-500	36.9-271.9
Dissolved Organic Carbon	mg/L	2	19	15	16	3	5	2	5	13	0.5	5	NC
Total Dissolved Solids	mg/L	91.0	343	1550	171	109	120	226	500	120	0.5	500	310.2
Iron	mg/L	0.0	23.9	0.021	0.834	1.37	0.42	1.50	0.3	7.35	0.5	0.3	NC
Manganese	mg/L	0.00999	2.56	1.8	0.326	0.322	0.412	0.489	0.05	1.088	0.5	0.10	NC

Notes:

Ontario Drinking Water Quality Standards - Ontario Regulation 169/03 "Ontario Drinking Water Quality Standards" under the Safe Drinking Water Act", dated 2002, and "Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines", 2003.

	ODWQS	2003.					
	BOLD	Exceeds Cm value.					
_	NC	Not Calculated due to the background concentration being in exceedance of the ODWQS.					
	Units	All Units in mg/L Unless Otherwise Noted.					
	Cb	Background Concentration - average of valid sampling rounds at BH1					
	Cr	Maximum Acceptable Contaminant Concentration					
	x	Reduction Constant					
	Cm	Maximum Off-Site Acceptable Contaminant Concentration					
TABLE 14 Surface Water Quality Results - SW-1 Croft Waste Disposal Site Magnetawan, Ontario

										5	Sample Designati	ion										1
Parameter	Units									Sample C	ollection Date (n	nm/dd/yyyy)									PWQO	CWQG
				10.10	00.0.45	40.0.4.40	10.14	05.0.47		17.0 / 10	SW-1	05.0 40			10.11			40.0.4.00	10.14		-	1
pH Lab	pH units	8-May-14 6.21	30-Oct-2014 6.02	13-May-15 6.01	22-Oct-15 6.44	13-Oct-16 6.3	18-May-17 6.2	25-Oct-17 6.1	2-May-18 5.8	17-Oct-18 5.4	11-Jun-19	25-Sep-19	2-Jun-20 DRY	1-Oct-20	12-May-21	7-Oct-21	4-May-22 6.29	18-Oct-22	10-May-23	28-Sep-23 DRY	6.5-8.5	6.5-9.0
Conductivity	uS/cm	23	23	27	400	186	27	45	20	72	478	89	-	676	780	<u>=</u> 635	699	490	502	-	-	-
Hardness	mg/L	10	11	11	150	56	12	22	7	27	80	22	-	158	221	213	248	148	151	-	-	-
Total Dissolved Solids	mg/L	42	76	48	270	184	154	84	24	84	432	80	-	418	449	480	383	250	320	-	-	-
Alkalinity	mg/L	5.5	5.9	3.8	7.8	12	7	10	6	7	<5	<5	-	<5	< 2	<2	7	< 2	< 2	-	-	-
Chloride	mg/L	<1	<1	3	100	41	2	5	1	10	<u>149</u>	17	-	<u>231</u>	<u>260</u>	240	<u>240</u>	<u>160</u>	<u>190</u>	-	-	120
Sodium	mg/L	0.63	0.65	0.9	6.6	3.7	1.44	0.885	0.781	1.18	14	3	-	23	27	33	25.6	18	19	-	-	-
Calcium	mg/L	3.3	3.6	3	32	14.9	3.96	6.41	2.1	7.99	32	5	-	38	58	52	70.1	41	42	-	-	-
Magnesium	mg/L	0.52	0.59	0.47	13	4.53	0.58	1.33	0.394	1.76	14	2	-	15	19	20	17.8	11	11	-		<u> </u>
Potassium	mg/L	0.27	0.31	0.38	6.5	1.23	0.34	1.47	0.468	1.37	2	1	-	2	3	2	4.04	3	3	-	-	<u> </u>
Sulphate	mg/L	<1 <0.05	<1 <0.05	<1 <0.05	15 0.058	2 0.06	0.01	<1 <0.01	2 0.02	6 0.05	4	3 0.15	-	3 <0.02	< 2 < 0.04	<2 <0.04	2 < 0.04	3 < 0.04	< 2 < 0.04	-	-	-
Ammonia Nitrate as N	mg/L mg/L	<0.05	<0.05	<0.05	<0.1	<0.1	<0.1	<0.01	<0.1	<0.1	<0.05	<0.05	-	<0.02	< 0.04	<0.04	< 0.04	< 0.04	< 0.04	-	-	- 13
Nitrite as N	mg/L	<0.01	<0.01	<0.01	<0.01	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	<0.10	< 0.03	<0.03	< 0.03	< 0.03	< 0.03	-	-	0.06
Total Kjeldahl Nitrogen	mg/L	1	0.55	0.49	0.67	0.8	0.6	0.9	0.3	1	0.41	2	-	0.45	0.14	0.35	0.19	0.21	0.67	-		-
Phenolics	mg/L	<0.001	0.0049	<0.001	<0.001	0.009	<0.001	0.006	<0.001	<0.001	0.001	0.01	-	0.003	0.002	0.004	0.003	0.004	0.003	-	0.001	0.004
Dissolved Organic Carbon	mg/L	13	21	16	14	24.1	16.3	27.5	7.6	44.8	4	12	-	10	2	4	3	10	3	-		-
Chemical Oxygen Demand	mg/L	27	56	47	38	81	55	77	28	85	8	37	-	20	13	30	19	14	24	-	-	-
Iron	mg/L	0.12	0.29	0.15	<u>0.65</u>	<u>0.981</u>	0.167	0.888	0.2	<u>0.794</u>	<u>2</u>	<u>0.42</u>	-	<u>6</u>	<u>5</u>	<u>10</u>	0.208	<u>1</u>	<u>6</u>	-	0.3	0.3
Manganese	mg/L	0.0094	0.028	0.019	0.23	0.038	0.072	0.152	0.022	0.079	1	0.10	-	1	1	2	0.894	1	1	-	-	-
Phosphorus	mg/L	0.01	0.009	0.008	0.026	<0.01	<0.01	0.03	<0.01	0.04	0.04	0.05	-	0.02	< 0.03	0.04	< 0.003	0.03	0.04	-	0.03	-
Orthophosphate	mg/L	<0.01	<0.01	<0.01	<0.01	-	-	-	-	-	<0.10	-	-	-	-	-	< 0.03	-	< 0.03	-	-	-
Turbidity	NTU	0.2	0.3	0.4	2.5	1.5	0.7	1.4	2.1	0.9	6	3	-	5	-	-	-	-	-	-	-	-
Total Suspended Solids	mg/L	<10	<10	<1	<10	4	<2	4	2	<2	38	<10	-	10	8	63	12	4	16	-		-
BOD Anion Sum	mg/L	<2 0.109	2 0.117	<2 0.175	<2 3.28	<12 1.41	- 0.23	- 0.35	<2 0.19	<2 0.54	<5	<5	-	<5	< 4	<4	< 4	< 4	< 4	-		<u> </u>
Cation Sum	-	0.109	0.281	0.339	3.58	1.31	0.32	0.55	0.19	0.63		-	-	-	-	-	-	-	-	-	-	-
Ion Balance	%	NC	NC	NC	4.34	-3.9	-	-	-1.5	8.1	-	-	-	-	-	-	-	-	-	-	<u> </u>	-
Silver	mg/L	< 0.0001	<0.0001	< 0.0001	<0.0001	< 0.0005	<0.0001	<0.0001	<0.0001	1.18	<0.0001	<0.0001	-	<0.0001	< 0.00005	<0.00005	< 0.00005	< 0.00005	< 0.00005	-	0.0001	0.00025
Aluminum	mg/L	<u>0.26</u>	0.34	0.26	0.22	0.167	0.228	0.265	0.133	0.375	0.72	0.28	-	1.42	1.20	<u>0.53</u>	0.239	0.37	0.33	-	0.075	0.1
Antimony	mg/L	<0.0005	<0.0005	<0.0005	<0.0005	<0.0025	<0.0005	< 0.0005	<0.0005	< 0.0005	<0.001	<0.001	-	<0.001	< 0.0009	<0.0009	< 0.0009	< 0.0009	< 0.0009	-	0.02	-
Arsenic	mg/L	<0.001	<0.001	<0.001	<0.001	<0.005	<0.001	<0.001	<0.001	<0.001	< 0.003	<0.003	-	<0.003	< 0.0002	0	< 0.0002	0.0004	0.0003	-	0.1	0.005
Barium	mg/L	0.012	0.013	0.012	0.17	0.055	0.017	0.02	0.005	0.028	0.088	0.023	-	0.106	0.152	0.133	0.126	0.098	0.087	-	-	
Beryllium	mg/L	<0.0005	< 0.0005	<0.0005	<0.0005	<0.0025	<0.0005	<0.0005	<0.0005	< 0.0005	<0.0005	<0.0005	-	<0.0005	0	0	0.000033	0.00009	0.00006	-	1.1	-
Bismuth	mg/L	< 0.001	<0.001	<0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	<0.001	< 0.002	<0.002	-	<0.002	< 0.00001	0	< 0.00001	< 0.00001	< 0.00001	-	-	-
Boron	mg/L	<0.01 <0.0001	<0.01	<0.01 <0.0001	0.015	< 0.05	0.049	<0.01 <0.0001	0.011	<0.01	< 0.010	0.093	-	0	0	0 0.0004	0.015	0.010	0.018	-	0.2	1.5 0.00026
Cadmium Chromium	mg/L mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0005 <0.005	<0.001	<0.001	<0.0001 <0.001	<0.0001 0.001	0.0002	< 0.003	-	<0.002	0.0002	0.0004	< 0.000209	0.0003	0.0001	-	0.0002	0.00026
Cobalt	mg/L	<0.0005	<0.005	<0.0005	0.0023	<0.005	0.0013	0.0022	<0.0005	0.0013	0.003	0.001	-	0.013	0.011	0.012	0.00642	0.0003	0.0004	-	0.0009	-
Copper	mg/L	0.0018	<0.001	0.0012	0.0017	<0.0025	0.0016	< 0.0005	0.0009	0.0025	0.001	0.003	-	0.002	0.001	0.001	0.00042	0.003	0.001	-	0.0005	0.004
Molybdenum	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0025	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.002	<0.002	-	<0.002	< 0.00004	0	< 0.00004	0.0002	< 0.00004	-	0.04	0.073
Nickel	mg/L	0.0017	0.0025	0.002	0.0025	< 0.005	0.002	0.002	<0.001	0.004	0.003	<0.003	-	0.006	0.006	0.005	0.0034	0.003	0.003	-	0.025	0.15
Phosphate	mg/L	-	-	-	-	<0.0002	<0.2	<0.0002	<0.0002	<0.2	-	<0.10	-	<0.20	0	-	-	-	-	-	-	-
Lead	mg/L	0.00055	0.00066	0.00071	<0.0005	<0.0005	0.0007	0.0005	0.0001	0.0008	<0.001	<0.001	-	<0.001	0	0	< 0.00009	0.0006	0.0001	-	0.005	0.01
Selenium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.005	<0.001	<0.001	<0.001	<0.001	<0.004	<0.004	-	<0.004	< 0.00004	<0.00004	0.00006	0.0001	< 0.00004	-	0.1	0.001
Sillicon	mg/L	0.77	3.3	0.94	1.7	1.54	0.856	3.27	1.99	1.8	2	2	-	4	3	4	3.16	3	3	-	<u> </u>	-
Tin	mg/L	< 0.001	< 0.001	< 0.001	<0.001	< 0.025	< 0.005	< 0.005	< 0.005	< 0.005	< 0.002	< 0.002	-	<0.002	< 0.00006	0	< 0.00006	< 0.00006	0.0001	-	<u>↓ · </u>	
Strontium	mg/L	0.017	0.017	0.016	0.24	0.124	0.014	0.045	0.013	0.059	0.31	0.07	-	0.38	0.69	0.60	0.86	0.47	0.49	-	-	-
Titanium	mg/L mg/L	<0.005 0.00017	<0.005	<0.005 <0.0001	0.017 0.00012	<0.025 <0.0005	<0.005 <0.0001	0.006	<0.005 <0.0001	0.006	0.00	0.01	-	0.00	0.01	0.01	< 0.00005 0.000009	0.00236	0.00521 0.00002	-	- 0.005	- 0.02
Uranium Vanadium	mg/L	< 0.00017	<0.0001	<0.0001	0.00012	<0.0005	0.0005	<0.0001	<0.0001	0.0007	<0.002	<0.002	-	<0.002	0	0	0.00009	0.000048	0.00002	-	0.005	0.02
Zinc	mg/L	0.0005	0.016	0.0066	0.02	<0.025	0.0003	0.013	0.009	0.0007	<u>0.12</u>	0.05	-	0.09	0.16	0.06	<u>0.254</u>	<u>0.00042</u>	<u>0.099</u>	-	0.008	0.093
Field Measurements	iiig/ L	0.0001	0.010	0.0000	0.02	~0.020	0.012	0.010	0.000	0.021	<u>9.12</u>	0.00	_	0.00	0.10	0.00	<u>9</u>	<u>3.114</u>	0.000	I	0.00	0.000
Temperature	оС	-	-	-	-	-	-	-	-	-	14.7	15.6	-	12.66	10.92	15.9	8.9	8	14.2	-	-	-
рН	pH Units	7.36	6.92	6.53	6.25	6.45	5.81	-	7.37	6.64	6.9	4.5	-	4.5	16.2	5.2	16.1	5.1	5.4	-	-	-
Coductivity	uS/cm	41	21	19.2	303	1975	-	-	0.03	0.08	772	83	-	550	683	800	603	167	416	-	-	-
Oxidation Reduction Potential	mV	-	-	-	-	-	-	-	-	-	174.9	226.3	-	276.5	172.7	191	88.3	153.6	124.2	-	-	-
Dissolved Oxygen	mg/L	-	-	-	-	-	-	-	-	-	1.26	3.6	-	9.62	8.37	1.57	7	3.91	1.62	-	-	-

Notes:

PWQO Provincial Water Quality Objective

APV Aquatic Protection Values CWQG Canadian Water Quality Guidelines BOLD Exceeds PWQO UNDERLINED Exceeds CWQG RDL exceeds the standard SHADED ONLY INSV Insufficient volume to allow for sampling CNL Could Not Locate No data available LS Limited Sample

Units All Units in mg/L Unless Otherwise Noted.

TABLE 15 Surface Water Quality Results - SW-2 Croft Waste Disposal Site Magnetawan, Ontario

											ample Designati											
Parameter	Units									Sample C	ollection Date (m	m/dd/yyyy)									PWQO	CWQG
				10.00 15	00.0.45	10.0.1.10	10.00 17	05.0.47		17.0 / 10	SW-2	05.0 40			10.10	7.0 / 0/	4 14 00	40.0.4.00	10.14			
nillah	nH unito	8-May-14	30-Oct-2014	13-May-15 5.88	22-Oct-15 6.6	13-Oct-16 6.6	18-May-17 4.1	25-Oct-17	2-May-18 5.9	17-Oct-18	11-Jun-19 5.82	25-Sep-19 5.16	2-Jun-20 6.98	1-Oct-20 6.66	12-May-21 6.80	7-Oct-21 5.82	4-May-22 6.34	18-Oct-22 5.81	10-May-23 6.46	28-Sep-23 7	6.5-8.5	6500
pH Lab Conductivity	pH units uS/cm	<u>5.79</u> 15	<u>5.83</u> 18	15	32	27	4.1 45	<u> </u>	<u>3.9</u> 13	19	21	33	32	23	25	17	<u>6.34</u> 14	22	18	22	- 0.0-0.0	6.5-9.0
Hardness	mg/L	4.3	5.2	5	13	7		5	3	7	4	11.3	8.1	9.5	8.4	7	4.4	8	6	8	-	-
Total Dissolved Solids	mg/L	24	52	<10	26	34	132	16	14	20	42	94	36	<20	< 30	<30	43	< 30	< 30	46	-	
Alkalinity	mg/L	1.2	2.1	1.8	9.3	9	<5	<5	<5	6	<5	<5	5	13	7	3	4	2	4	7	-	-
Chloride	mg/L	<1	1	1	<1	1	<1	<1	1	<1	2.05	0.6	0.86	0.9	2.0	<1	< 1	< 1	< 1	< 1	-	120
Sodium	mg/L	0.8	1.1	0.89	0.85	1	0.711	0.706	0.811	0.701	1.7	1.1	1.1	1.0	1.1	4.4	0.63	1	1	1	-	-
Calcium	mg/L	1.2	1.6	1.3	3.2	2.74	1.51	1.36	0.798	2.03	1.6	3.0	2.4	2.8	2.6	2.1	1.33	2	2	2	-	-
Magnesium	mg/L	0.3	0.43	0.34	1.1	<1	0.085	0.368	0.211	0.442	0.40	0.93	0.50	0.59	0.49	0.44	0.273	1	0.372	0.476	-	-
Potassium	mg/L	0.24	0.38	0.39	0.88	<0.5	0.357	0.521	0.398	0.309	0.33	0.71	0.62	0.58	0.49	0.86	0.284	1	0.343	0.289	-	-
Sulphate	mg/L	2	<1	<1	<1	3	3	<1	1	2	0.7	3.9	2.9	1.9	< 2	<2	< 2	< 2	< 2	< 2	-	-
Ammonia	mg/L	0.059	<0.05	<0.05	<0.05	0.04	0.02	0.02	0.03	0.03	0.14	0.18	<0.02	0.03	< 0.04	<0.04	< 0.04	< 0.04	< 0.04	< 0.04	<u> </u>	-
Nitrate as N	mg/L	<0.1	<0.1	<0.1	<0.1	<0.1	1.8	<0.1	<0.1	<0.1	< 0.05	0.10	< 0.05	< 0.05	< 0.06	0.40	< 0.06	0	0.35	< 0.06	-	13
Nitrite as N	mg/L	<0.01	<0.01	<0.01	<0.01	<0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	-	0.06
Total Kjeldahl Nitrogen	mg/L	-	0.42	0.44	<0.5	0.3	0.9	0.5	0.4	0.5	1.07	1.67	0.45	0.62	0.27	0.37	0.26	0.45	0.34	0.40	-	-
Phenolics Disselved Organia Carbon	mg/L	<0.001 6.4	<u>0.0043</u>	- 11	<0.001 10	0.002 6.4	<0.001 14.7	12.7	<0.001 4.5	<0.001 16.6	0.002 11.8	<u>0.012</u> 38.3	0.002 6.7	<0.001 11.0	< 0.001 7.0	<0.001 13.0	< 0.001	0.003 13	< 0.001	< 0.001 8	0.001	0.004
Dissolved Organic Carbon Chemical Oxygen Demand	mg/L mg/L	15	13 35	26	28	36	63	30	4.5	21	44	125	21	7	25	33	° 22	37	27	< 8		-
Iron	mg/L	0.38	1	1	2.5	0.738	0.632	1.09	0.364	0.596	1.31	2.73	0.451	1.25	0.711	1.11	0.25	1	1	1	0.3	0.3
Manganese	mg/L	0.034	0.046	0.049	0.31	0.032	0.085	0.055	0.035	0.041	0.122	0.305	0.077	0.076	0.052	0.056	0.0286	0	0.05	0.06	-	-
Phosphorus	mg/L	0.006	0.013	0.017	0.027	<0.01	0.05	0.04	0.01	0.02	0.07	0.15	<0.02	<0.02	< 0.03	0.02	0.004	0.03	0.03	0.02	0.03	-
Orthophosphate	mg/L	< 0.01	< 0.01	<0.01	<0.01	-	-	-	-	-	<0.10	-	<0.10	-	-	-	< 0.03	-	< 0.03	< 0.03	-	-
Turbidity	NTU	0.4	1.2	1.2	5	1.1	8.6	2.4	2.2	1.9	8.1	9.2	1.0	1.5	-	-	-	-	-	-	-	-
Total Suspended Solids	mg/L	17	<10	1	<10	3	15	2	7	<2	26	<10	<10	<10	3	5	4	2	9	9	-	-
BOD	mg/L	<2	<2	<2	<2	<2	-	-	<2	<2	<5	<5	<5	13	< 4	<4	< 4	< 4	< 4	< 4	-	-
Anion Sum	-	0.056	0.081	0.077	0.186	0.28	0.21	0.13	0.14	0.2	-	-	-	-	-	-	-	-	-	-	-	-
Cation Sum	-	0.167	0.201	0.191	0.379	0.21	0.14	0.14	0.1	0.18	-	-	-	-	-	-	-	-	-	-	-	-
Ion Balance	%	NC	NC	NC	NC	-13.6	-	-	-	-6.2	-	-	-	-	-	-	-	-	-	-	<u> </u>	-
Silver	mg/L	<0.0001	<0.0001	< 0.0001	<0.0001	< 0.0005	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	0.0004	< 0.00005	<0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	0.0001	0.00025
Aluminum	mg/L	<u>0.18</u>	<u>0.3</u>	0.25	<u>0.13</u>	0.037	<u>0.192</u>	<u>0.216</u>	0.005	0.135	<u>0.176</u>	0.577	0.063	0.087	0.067	0.303	<u>0.139</u>	0.15	<u>0.14</u>	0.04	0.075	0.1
Antimony	mg/L	<0.0005	<0.0005	< 0.0005	< 0.0005	<0.0025	< 0.0005	<0.0005	< 0.0005	< 0.0005	< 0.001	< 0.001	<0.001	<0.001 <0.003	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009	0.02	- 0.01
Arsenic	mg/L mg/L	<0.001 0.008	<0.001 0.0091	<0.001 0.0087	<0.001 0.01	<0.005 0.008	<0.001 0.012	<0.001 0.009	<0.001 0.003	<0.001 0.009	<0.003 0.012	<0.003 0.030	<0.003 0.008	0.012	< 0.0002 0.008	<0.0002 0.011	0.0003	0.0005	0.0002	0.0003	0.1	0.01
Barium Bervllium	mg/L	< 0.0005	<0.0091	< 0.0005	<0.0005	<0.0025	< 0.0005	<0.0005	< 0.0005	<0.0005	<0.0005	< 0.0005	< 0.0005	< 0.0005	0.000015	0.000028	0.00043	0.00027	0.00029	0.000017	- 1.1	
Bismuth	mg/L	<0.0003	<0.001	<0.001	<0.000	<0.0025	<0.0003	<0.0003	<0.000	<0.000	<0.002	<0.000	<0.000	<0.000	< 0.000013	0.000020	< 0.000024	< 0.000027	< 0.000023	< 0.000017	-	-
Boron	mg/L	<0.01	<0.01	<0.01	<0.01	<0.05	0.023	<0.01	0.011	<0.01	0.012	<0.002	<0.002	0.019	0.010	0.008	0.009	0.007	0.016	0.009	0.2	1.5
Cadmium	mg/L	< 0.0001	<0.0001	<0.0001	<0.0001	< 0.0005	<0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001	0.0001	<0.0001	0.0004	0.000025	0.00003	0.000015	0.000041	0.000025	0.000004	0.0002	0.00026
Chromium	mg/L	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.001	<0.001	< 0.001	< 0.001	< 0.003	< 0.003	< 0.003	< 0.003	0.00034	0.0004	0.00047	0.00038	0.00037	0.00026	0.0089	0.001
Cobalt	mg/L	< 0.0005	< 0.0005	< 0.0005	0.0011	< 0.0025	0.0007	0.0005	< 0.0005	< 0.0005	0.0009	0.0028	< 0.0005	< 0.0005	0.000241	0.000357	0.000144	0.001	0.0003	0.0002	0.0009	-
Copper	mg/L	<0.001	<0.001	<0.001	<0.001	<u>0.0143</u>	0.0008	<0.0005	<0.0005	0.0008	<0.001	0.003	<0.001	0.002	0.001	0.001	0.0005	0.001	0.001	0.001	0.005	0.004
Molybdenum	mg/L	<0.0005	<0.0005	<0.0005	<0.0005	<0.0025	<0.0005	<0.0005	<0.0005	<0.0005	<0.002	<0.002	<0.002	<0.002	0.00026	<0.00004	0.00007	0	< 0.00004	< 0.00004	0.04	0.073
Nickel	mg/L	0.0012	0.001	<0.001	<0.001	<0.005	0.001	<0.001	<0.001	<0.001	< 0.003	<0.003	<0.003	<0.003	0.001	0.001	0.0006	0.001	0.001	0.001	0.025	0.15
Phosphate	mg/L	-	-	-	-	<0.0002	<0.0002	<0.0002	<0.2	<0.2	-	<0.10	-	<0.10	0.012	-	-	-	-	-	-	-
Lead	mg/L	<0.0005	<0.0005	<0.0005	<0.0005	0.0008	0.0003	0.0002	0.0001	0.0002	<0.001	0.001	<0.001	<0.001	0.00024	0.00036	0.00012	0.00036	0.00023	0.00022	0.005	0.01
Selenium	mg/L	<0.002	<0.002	<0.002	<0.002	<0.005	< 0.001	<0.0001	<0.001	< 0.001	< 0.004	<0.004	<0.004	<0.004	0.00007	0.00007	0.00009	0.00007	< 0.00004	0.00005	0.1	0.001
Sillicon	mg/L	0.6	2.1	0.59	3.1	<0.05	0.306	2.15	1.14	1.27	0.45	4.6	0.91	2.02	1.04	1.75	0.66	1.65	1.09	0.68	-	-
l in Oterantiane	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	<0.025	< 0.005	< 0.005	<0.005	<0.005	< 0.002	< 0.002	< 0.002	<0.002	0.00013	0.0003	< 0.00006	0.00007	< 0.00006	0.00007	<u>↓ ·</u>	-
Strontium	mg/L	0.0086	0.011	0.0092	0.022	<0.05	0.014	0.014	<0.01	0.016	0.011	0.025	0.015	0.019	0.016	0.016	0.0108	0.0175	0.0112	0.0153	-	
Titanium Uranium	mg/L mg/L	<0.005 0.00012	<0.005 <0.0001	<0.005 <0.0001	<0.005 <0.0001	<0.025 <0.0005	<0.005 <0.0001	<0.005 <0.0001	<0.005 <0.0001	<0.005 <0.0001	0.003	0.008	<0.002 <0.002	0.002	0.00183 0.000036	0.00423 0.000063	0.00117 0.000048	0.00374	0.00703	0.00114 0.000031	- 0.005	- 0.02
Vanadium	mg/L	< 0.00012	<0.0001	0.00058	0.00082	<0.0005	0.0005	<0.0001	<0.0001	<0.0001	<0.002	0.002	<0.002	<0.002	0.00038	0.00063	0.00048	0.000057	0.00005	0.00031	0.005	0.02
Zinc	mg/L	0.0005	0.0085	0.0069	<0.005	<0.0025	0.0003	0.008	0.007	0.01	0.012	0.022	<0.002	0.002	0.00029	0.0008	0.00033	0.00084	0.00049	0.003	0.008	0.09
Field Measurements	g/∟	0.0075	0.0003	0.0003	~0.000	NU.U20	0.022	0.000	0.007	0.01	0.012	0.021	~0.000	0.000	0.010	0.000	0.000	0.000	0.000	0.000	0.05	0.03
Temperature	оС	9.2	6.1	13.1	7.69	17.6	21.4	-	-	7.3	17.8	14.4	17.6	14.76	13.63	16.9	15.1	8.5	15.9	11.6	-	-
pH	pH Units	5.95	7	9.26	6.68	7.03	6.03	-	6.52	7.1	6.8	4.5	7.1	6.2	16.2	6.9	15.9	5.9	5.1	6.6	· .	-
Coductivity	uS/cm	34	1044	13	46	6.6	4.1	5.6	5.9	6	251	30.1	28	22.0	16.0	23.0	11.3	19	14	176	-	-
Oxidation Reduction Potential	mV	-	-	-	-	-	-	-	-	-	139.5	205.9	141.8	129.6	119	34.4	83.6	106	177.3	92.3	-	-
Dissolved Oxygen	mg/L	6.86	4.4	8.17	7.36	-	-	-	-	-	2.73	1.57	6.27	9.62	8.98	5.31	7.49	7.36	8.54	0.5	-	-
Notes:						•			•												·	<i>,</i>

Notes:

PWQO Provincial Water Quality Objective

APV Aquatic Protection Values CWQG Canadian Water Quality Guidelines BOLD Exceeds PWQO UNDERLINED Exceeds CWQG RDL exceeds the standard SHADED ONLY INSV Insufficient volume to allow for sampling CNL Could Not Locate No data available LS Limited Sample

> Units All Units in mg/L Unless Otherwise Noted.

TABLE 16 Surface Water Quality Results - SW-3 Croft Waste Disposal Site Magnetawan, Ontario

									S	ample Designati	on									
Parameter	Units								Sample Co	ollection Date (m	m/dd/yyyy)								PWQO	CWQG
										SW-3										
pH Lab	pH units	8-May-14 7.73	30-Oct-2014 7.09	13-May-15 6.38	22-Oct-15 7.59	13-Oct-16 7.9	18-May-17 DRY	25-Oct-17 DRY	11-Jun-19 7.54	25-Sep-19 7.41	2-Jun-20 No Sample	1-Oct-20 8.15	12-May-21 8.12	7-Oct-21 7.47	4-May-22 8.18	18-Oct-22 DRY	10-May-23 8	28-Sep-23 DRY	6.5-8.5	6.5-9.0
Conductivity	uS/cm	820	510	210	1400	2060	-	-	193	241	-	901	617.00	687.00	317	-	386	-	-	-
Hardness	mg/L	250	170	77	410	460	-	-	64.7	56.7	-	309.0	208.00	273.00	147	-	140	-	-	-
Total Dissolved Solids	mg/L	552	276	158	820	1380	-	-	112	124	-	536	403.00	420.00	209	-	229	-	-	-
Alkalinity	mg/L	190	120	17	190	657	-	-	78	69	-	444	204.00	267.00	115	-	133	-	-	-
Chloride	mg/L	49	34	9	<u>160</u>	242	-	-	6.38	14.20	-	61.50	50.00	53.00	34	-	36	-	-	120
Sodium	mg/L	60	31	8	99	227	-	-	7.49	14.90	-	62.32	47.30	58.20	16.6	-	17	-	-	-
Calcium	mg/L	83	55	22	120	146	-	-	25.90	18.90	-	101.58	67.70	88.80	51.6	-	48	-	-	-
Magnesium	mg/L	11	8.6	3.3	17	23.1	-	-	2.69	2.31	-	13.45	9.56	12.50	4.51	-	5	-	-	-
Potassium	mg/L	33	13	3.3	33	66.7	-	-	4.77	9.13	-	29.6	23.70	28.30	10.3	-	10	-	-	-
Sulphate	mg/L	110	73	58	160	159	-	-	6.96	6.96	-	17.00	18.00	27.00	24	-	26	-	-	-
Ammonia	mg/L	4.6	1.1	0.48	0.1	4.54	-	-	0.05	0.66	-	14.30	0.60	1.95	0.08	-	1.55	-	-	-
Nitrate as N	mg/L	4.57	1.22	0.31	11.3	3.7	-	-	0.10	0.40	-	1.40	9.12	9.73	4.86	-	0.42	-	-	13
Nitrite as N	mg/L	<u>0.171</u>	0.045	<0.01	<u>0.12</u>	<0.05	-	-	<0.05	0.08	-	<0.25	0.46	0.62	< 0.03	-	< 0.03	-	-	0.06
Total Kjeldahl Nitrogen	mg/L	6.9	2	0.93	1.6	9	-	-	1.22	1.52	-	17.40	1.74	2.52	0.62	-	2.23	-	-	-
Phenolics	mg/L	0.0027	0.0053	<0.001	0.0017	0.029	-	-	0.003	0.008	-	0.003	0.003	0.002	< 0.001	-	0.002	-	0.001	0.004
Dissolved Organic Carbon	mg/L	30	17	7.1	30	90.2	-	-	13.7	11.2	-	40.4	25.00	27.00	14	-	13	-	-	<u> </u>
Chemical Oxygen Demand	mg/L	81	47	16	80	270	-	-	44	53	-	75	85.00	62.00	32	-	42	-	-	-
Iron	mg/L	0.067	<u>2.4</u>	0.21	0.16	<u>0.854</u>	-	-	<u>1.35</u>	<u>1.65</u> 0.138	-	<u>1.04</u>	0.56	<u>0.79</u>	0.015	-	<u>0.44</u>	-	0.3	0.3
Manganese	mg/L	0.067	0.18			1.07	-	-	0.351		-	0.479	0.00	0.09	0.00033	-	0.29	-	-	-
Phosphorus Orthanhanakata	mg/L	0.052 <0.01	0.062 <0.01	0.014	0.045 <0.01	0.17	-	-	0.06 <0.10	0.21	-	0.04	< 0.03	0.05	0.005	-	0.03	-	0.03	-
Orthophosphate	mg/L NTU	49	<0.01	0.6	2.4	- 8.1	-	-	<0.10	- 71	-	7.2	-		< 0.03	-	< 0.03		-	-
Turbidity	mg/L	160	<10	0.6	<10	19	-	-	16	52	-	<10	16.00	8.00	- 6	-	- 5	-		
Total Suspended Solids BOD	mg/L	3	<10	<2	<2	32			<5	<5	-	444	< 4	4.00	< 4	-	< 4	-		
Anion Sum		7.92	4.99	1.83	12.6	23.5		-	-	-	-	-	-	-	-	-	-	-	-	-
Cation Sum	-	8.83	5.1	2.1	13.9	20.8		-	-	-	-	-	-	-	-	-	-	-	-	-
Ion Balance	%	5.4	1.1	NC	4.85	-6.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Silver	mg/L	<0.0001	<0.0001	< 0.0001	<0.0001	< 0.0005	-	-	< 0.0001	<0.0001	-	<0.0001	< 0.00005	<0.00005	< 0.00005	-	< 0.00005	-	0.0001	0.00025
Aluminum	mg/L	0.81	0.08	0.087	0.073	0.038	-	-	0.032	0.062	-	0.035	0.05	0.02	0.035	-	0.05	-	0.075	0.1
Antimony	mg/L	< 0.0005	< 0.0005	<0.0005	< 0.0005	<0.0025	-	-	<0.001	<0.001	-	<0.001	< 0.0009	<0.0009	< 0.0009	-	< 0.0009	-	0.02	-
Arsenic	mg/L	<0.001	<0.001	<0.001	<0.001	<0.005	-	-	< 0.003	< 0.003	-	< 0.003	0.0008	0.0012	0.0004	-	0.0005	-	0.1	0.01
Barium	mg/L	0.077	0.063	0.052	0.11	0.119	-	-	0.026	0.029	-	0.040	0.03	0.05	0.02101	-	0.032	-	-	-
Beryllium	mg/L	<0.0005	<0.0005	<0.0005	<0.0005	<0.0025	-	-	<0.0005	<0.0005	-	<0.0005	0.000013	0.000032	< 0.000007	-	0.00002	-	1.1	-
Bismuth	mg/L	<0.001	<0.001	<0.001	<0.001	<0.005	-	-	<0.002	<0.002	-	<0.002	0.000050	0.000010	< 0.00001	-	< 0.00001	-	-	-
Boron	mg/L	1	0.51	0.15	1	<u>2.29</u>	-	-	0.219	0.471	-	1.42	1.27	1.16	0.458	-	0.33	-	0.2	1.5
Cadmium	mg/L	0.00014	<0.0001	<0.0001	0.0002	<0.0005	-	-	<0.0001	<0.0001	-	<0.0001	0.00002	0.00006	0.000006	-	0.000036	-	0.0002	0.00026
Chromium	mg/L	<0.005	< 0.005	<0.005	< 0.005	<0.005	-	-	<0.003	<0.003	-	<0.003	<u>0.001</u>	<u>0.003</u>	0.00057	-	0.00083	-	0.0089	0.001
Cobalt	mg/L	0.0012	0.0012	<0.0005	0.0016	0.005	-	-	0.0012	0.001	-	0.001	0.001	0.001	0.000236	-	0.001	-	0.0009	
Copper	mg/L	<u>0.0071</u>	0.0018	<0.001	0.0062	<u>0.008</u>	-	-	0.004	<u>0.008</u>	-	<u>0.005</u>	0.004	<u>0.01</u>	0.0026	-	0.003	-	0.005	0.004
Molybdenum	mg/L	0.001	<0.0005	<0.0005	0.0014	0.0035	-	-	<0.002	<0.002	-	<0.002	0.001	0.0004	0.00033	-	0.0007	-	0.04	0.073
Nickel	mg/L	0.0018	0.0017	<0.001	0.0025	0.01	-	-	<0.003	<0.003	-	<0.003	0.002	0.0022	0.0006	-	0.001	-	0.025	0.15
Phosphate	mg/L	-	-	-	-	<0.0002	-	-	-	<0.10	-	<0.50	0.06	-	-	-	-	-	-	-
Lead	mg/L	0.0013	<0.0005	< 0.0005	< 0.0005	0.0005	-	-	0.001	0.003	-	<0.001	0.00038	0.00227	0.00012	-	0.00012	-	0.005	0.01
Selenium	mg/L	<0.002	<0.002	<0.002	<0.002	< 0.005	-	-	< 0.004	< 0.004	-	< 0.004	0.00019	0.00017	0.00009	-	< 0.00004	-	0.1	0.001
Sillicon	mg/L	2.3	3	2.2	1.4	1.04	-	-	0.99	1.01	-	2.48	0.36	2.36	0.66	-	2	-	-	-
Tin	mg/L	<0.001	<0.001	<0.001	<0.001	<0.025	-	-	<0.002	< 0.002	-	< 0.002	0.00	0.00	< 0.00006	-	0.00012	-	-	+
Strontium	mg/L	0.3	0.19	0.084	0.38	0.523	-	-	0.095	0.076	-	0.317	0.28	0.36	0.0108	-	0.16	-	-	<u>+ -</u>
Titanium	mg/L	0.047	< 0.005	<0.005	< 0.005	< 0.025	-	-	0.013	0.038	-	0.008	0.01	0.04	0.00117	-	0.00931	-	-	-
Uranium	mg/L	0.0026	0.00072	0.00011 <0.0005	0.0018	0.0059 <0.0025	-	-	<0.002 <0.002	<0.002 0.002	-	<0.002	0.000541 0.000510	0.000559	0.000048	-	0.0004	-	0.005	0.02
Vanadium	mg/L	0.0017	<0.0005	<0.0005	0.00068	<0.0025 0.055	-	-	<0.002	0.002	-	<0.002		0.001540	0.00033	-	0.00061	-	0.006	-
Zinc Field Measurements	mg/L	0.0082	<0.005	<0.005	0.009	0.000	-	-	0.009	0.013	-	<0.005	0.004000	0.012000	0.006	-	0.003	-	0.03	0.09
Field Measurements Temperature		4.5	c =			46.5			10.0	105		11.00	10 70	15.00	10.40				-	T
nemperature nH	oC	16	6.7	14.1	8.2	18.9	-	-	19.2	16.5	-	11.68	18.78 8.15	15.80	12.40 16.04	-	-	-		-
pri Coductivity	pH Units uS/cm	7.68	6.67	6.43 490	5.33 860	6.73	-	-	7.1 215.1	7.33 6.25	-	7.86	8.15 512.00	7.26 154.00		-	6.1	-	-	-
Coductivity Oxidation Reduction Potential	uS/cm mV	- 249	15	490	- 860	179	-	-	215.1	6.25	-	297.7	126.10	29.40	321.80 -7.10	-	21 127	-	-	-
					4.98	-	-	-			-					-		-		
Dissolved Oxygen	mg/L	5.05	11.12	6.56	4.90	-	-	-	6.05	6.43	-	17.01	11.28	1.06	7.70	-	1.75	-	-	-

PWQO APV CWQG Provincial Water Quality Objective Aquatic Protection Values Canadian Water Quality Guidelines BOLD Exceeds PWQO UNDERLINED Exceeds CWQG SHADED ONLY RDL exceeds the standard INSV Insufficient volume to allow for sampling CNL Could Not Locate No data available LS Limited Sample

All Units in mg/L Unless Otherwise Noted. Units

TABLE 17 Groundwater Duplicate Data Croft Waste Disposal Site Magnetawan, Ontario

Parameter	Units	RDL	PQL		10)-May-23		28	3-Sep-23
	Units	RUL	FUL	BH-14	GW DUP	Relative Percent Difference (%)	BH-13	GW DUP	Relative Percent Difference (%)
oH Lab	pH Units	0.05	0.25	7.61	7.52	1.19	7.47	7.25	2.99
Conductivity	uS/cm	2	10	389	391	0.51	207	195	5.97
Hardness	mg/L	0.05	0.25	157	156	0.64	85.9	88	2.87
Fotal Dissolved Solids	mg/L	30	150	260	254	2.33	120	117	2.53
Alkalinity	mg/L	2	10	80	81	1.24	76	72	5.41
Chloride	mg/L	1	5	67	64	4.58	15	15	0.00
Sodium	mg/L	0.01	0.05	9.47	9.24	2.46	6	5.68	2.32
Calcium	mg/L	0.01	0.05	49.2	48.9	0.61	28.6	29.4	2.76
Magnesium	mg/L	0.001	0.005	8.25	8.23	0.24	3.52	3.63	3.08
Potassium	mg/L	0.009	0.045	2.79	2.75	1.44	1.26	1.27	0.79
Sulphate	mg/L	2	10	25	26	3.92	4	4	0.00
Ammonia	mg/L	0.04	0.2	0.07	0.07	0.00	0.09	0.06	40.00
Nitrate as N	mg/L	0.06	0.3	< 0.06	< 0.06	NC	< 0.06	< 0.06	NC
Nitrite as N	mg/L	0.03	0.15	< 0.03	< 0.03	NC	< 0.03	< 0.03	NC
Fotal Kjeldahl Nitrogen	mg/L	0.05	0.25	0.19	0.2	5.13	0.38	0.25	41.27
Phenolics	mg/L	0.002	0.01	< 0.002	< 0.002	NC	< 0.002	< 0.002	NC
Dissolved Organic Carbon	mg/L	1	5	3	3	0.00	5.0	5	0.00
Chemical Oxygen Demand	mg/L	8	40	< 8	< 8	NC	11	19	NC
ron	mg/L	0.007	0.035	3.46	3.41	1.46	0.416	0.445	6.74
Manganese	mg/L	0.00001	0.00005	0.953	0.938	1.59	0.41	0.42	1.92
Phosphorus	mg/L	0.03	0.15	0.61	0.62	1.63	0.06	0.1	50.00
Furbidity	NTU	0.1	0.5	200	197	1.51	55	40	31.58
otal Suspended Solids	mg/L	2	10	545	953	54.47	284	264	7.30
BOD	mg/L	2	10	< 4	< 4	NC	< 4	< 4	NC
Silver	mg/L	0.00005	0.00025	< 0.00005	< 0.00005	NC	< 0.00005	0.00006	NC
Aluminum	mg/L	0.001	0.005	0.021	0.026	21.28	0.051	0.051	0.00
Antimony	mg/L	0.0009	0.0045	< 0.0009	< 0.0009	NC	< 0.0009	< 0.0009	NC
Arsenic	mg/L	0.0002	0.001	0.0003	0.0003	0.00	0.0003	0.0002	40.00
Barium	mg/L	0.00008	0.0004	0.0731	0.0711	2.77	0.055	0.0557	1.08
Beryllium	mg/L	0.000007	0.000035	0.000052	0.000039	28.57	0.000044	0.000041	7.06
Bismuth	mg/L	0.00001	0.00005	< 0.00001	< 0.00001	NC	< 0.00001	< 0.00001	NC
Boron	mg/L	0.002	0.01	0.068	0.066	2.99	0.07	0.056	22.22
Cadmium	mg/L	0.000003	0.000015	0.000009	0.00001	10.53	0.000056	0.000065	14.88
Chromium	mg/L	0.00008	0.0004	0.00025	0.00019	27.27	0.00032	0.00034	6.06
Cobalt	mg/L	0.000004	0.00002	0.000515	0.000511	0.78	0.000261	0.000252	3.51
Copper	mg/L	0.0002	0.001	0.0003	0.0003	0.00	0.007	0.0092	30.00
Molybdenum	mg/L	0.00004	0.0002	0.00028	0.00025	11.32	0.00021	0.00013	47.06
Nickel	mg/L	0.0001	0.0005	0.0002	0.0002	0.00	0.0011	0.0014	24.00
Phosphate	mg/L	-	-	-	-	NC	-	-	NC
_ead	mg/L	0.00009	0.00045	< 0.00009	< 0.00009	NC	< 0.00009	< 0.00009	NC
Selenium	mg/L	0.00004	0.0002	0.00008	0.00012	40.00	0.00015	0.00011	30.77
Sillicon	mg/L	0.02	0.1	9.48	9.44	0.42	4	3.75	2.98
Fin	mg/L	0.00006	0.0003	0.00007	0.0001	NC	0.00006	0.00011	NC
Strontium	mg/L	0.00008	0.0004	0.235	0.236	0.42	0.056	0.0583	3.31
Fitanium	mg/L	0.00007	0.00035	0.00126	0.00296	80.57	0.00043	0.00046	6.74
Jranium	mg/L	0.000002	0.00001	0.000428	0.000230	0.00	0.00605	0.00628	3.73
/anadium	mg/L	0.00001	0.00005	0.00035	0.00035	0.00	0.00043	0.00041	4.76
Zinc	mg/L	0.00001	0.00000	< 0.002	< 0.002	NC	0.005	0.006	18.18

Not calculable due to one or more of the concentrations being quantified over the reasonable detection limit (RDL) or the practical quantification limit (PQL).

BOLD

NC

Bolded and shaded entries indicates that the relative percent difference (RPD) exceeds the industry standard of 50%.

APPENDIX IV Photographic Log

2023 Annual Monitoring Report Croft Waste Disposal Site, Magnetawan, Ontario February 28, 2024 Pinchin File: 225335.007

APPENDIX V Laboratory Certificates of Analysis

CA15027-OCT23 R

225335.007, Croft Landfill SW

Prepared for

Pinchin Ltd

First Page

CLIENT DETAILS		LABORATORY DETAILS	
Client	Pinchin Ltd	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	662 Falconbridge Road, Unit 3, Sudbury	Address	185 Concession St., Lakefield ON, K0L 2H0
	Canada, P3A 4S4		
	Phone: 705-521-0560. Fax:		
Contact	Alana Valle	Telephone	705-652-2143
Telephone	705-521-0560	Facsimile	705-652-6365
Facsimile		Email	brad.moore@sgs.com
Email	avalle@Pinchin.com	SGS Reference	CA15027-OCT23
Project	225335.007, Croft Landfill SW	Received	10/03/2023
Order Number		Approved	10/17/2023
Samples	Surface Water (2)	Report Number	CA15027-OCT23 R
		Date Reported	10/17/2023

COMMENTS

Temperature of Sample upon Receipt: 9 degrees C Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: n/a

SIGNATORIES

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-5
Exceedance Summary	6
QC Summary	
Legend	16
Annexes	17

Client: Pinchin Ltd

Project: 225335.007, Croft Landfill SW

Project Manager: Alana Valle

Samplers: Alana Valle

			Openale Newsborg	0	7
MATRIX: WATER			Sample Number	6	7
			Sample Name	SW2	SW DUP Surface Water
L1 = PWQO_L / WATER / Table 2 - General - July 1999 PI	BS 3303E		Sample Matrix Sample Date	Surface Water 28/09/2023	28/09/2023
Parameter	Units	RL	L1	Result	Result
General Chemistry					
Biochemical Oxygen Demand (BOD5)	mg/L	2		< 4↑	< 4↑
Prep BOD	Prep	no		45203	45203
Total Suspended Solids	mg/L	2		9	4
Alkalinity	mg/L as CaCO3	2		7	6
Conductivity	uS/cm	2		22	21
Total Dissolved Solids	mg/L	30		46	54
Chemical Oxygen Demand	mg/L	8		< 8	27
Colour	TCU	3		53	52
Total Kjeldahl Nitrogen (N)	as N mg/L	0.05		0.40	0.38
Ammonia+Ammonium (N)	as N mg/L	0.04		< 0.04	< 0.04
Total Reactive Phosphorous (o-phosphate	mg/L	0.03		< 0.03	< 0.03
as P)					
Dissolved Organic Carbon	mg/L	1		8	8
Metals and Inorganics					
Sulphate	mg/L	2		< 2	< 2
Nitrite (as N)	as N mg/L	0.03		< 0.03	< 0.03
Nitrate (as N)	as N mg/L	0.06		< 0.06	< 0.06
Hardness	mg/L as CaCO3	0.05		7.6	8.0
Silver (total)	mg/L	0.00005	0.0001	< 0.00005	< 0.00005
Aluminum (0.2µm)	mg/L	0.001	0.075	0.036	0.037
Arsenic (total)	mg/L	0.0002	0.005	0.0003	0.0003
Barium (total)	mg/L	0.00008		0.00994	0.00987

Client: Pinchin Ltd

Project: 225335.007, Croft Landfill SW

Project Manager: Alana Valle

Samplers: Alana Valle

						-
MATRIX: WATER			Sample Number	6	7	
			Sample Name	SW2	SW DUP	,
L1 = PWQO_L / WATER / Table 2 - General - July 1999 PIBS 3303E			Sample Matrix	Surface Water	Surface Water	ıter
			Sample Date	28/09/2023	28/09/2023	3
Parameter	Units	RL	L1	Result	Result	
Metals and Inorganics (continued)						
Beryllium (total)	mg/L	0.000007	0.011	0.000017	0.000010)
Bismuth (total)	mg/L	0.00001		< 0.00001	< 0.00001	1
Boron (total)	mg/L	0.002	0.2	0.009	0.009	
Calcium (total)	mg/L	0.01		2.26	2.40	
Cadmium (total)	mg/L	0.000003	0.0001	0.000004	0.000006	;
Cobalt (total)	mg/L	0.000004	0.0009	0.000226	0.000250)
Chromium (total)	mg/L	0.00008	0.1	0.00026	0.00033	
Copper (total)	mg/L	0.0002	0.001	0.0012	0.0045	
Iron (total)	mg/L	0.007	0.3	0.973	1.01	
Potassium (total)	mg/L	0.009		0.289	0.312	
Magnesium (total)	mg/L	0.001		0.476	0.496	
Manganese (total)	mg/L	0.00001		0.0601	0.0627	
Molybdenum (total)	mg/L	0.00004	0.04	< 0.00004	< 0.00004	4
Sodium (total)	mg/L	0.01		1.08	1.11	
Nickel (total)	mg/L	0.0001	0.025	0.0006	0.0012	
Lead (total)	mg/L	0.00009	0.005	0.00022	0.00033	
Phosphorus (total)	mg/L	0.003	0.01	0.018	0.014	
Antimony (total)	mg/L	0.0009	0.02	< 0.0009	< 0.0009	
Selenium (total)	mg/L	0.00004	0.1	0.00005	0.00006	
Silicon (total)	mg/L	0.02		0.68	0.73	
Tin (total)	mg/L	0.00006		0.00007	0.00009	
Strontium (total)	mg/L	0.00008		0.0153	0.0161	

Client: Pinchin Ltd

Project: 225335.007, Croft Landfill SW

Project Manager: Alana Valle

Samplers: Alana Valle

		Sample Num	ber 6	7
		Sample Na	me SW2	SW DUP
		Sample Ma	trix Surface Water	Surface Water
		Sample D	ate 28/09/2023	28/09/2023
Units	RL	L1	Result	Result
mg/L	0.00007		0.00114	0.00110
mg/L	0.000002	0.005	0.000031	0.000032
mg/L	0.00001	0.006	0.00030	0.00033
mg/L	0.002	0.02	0.003	0.007
No unit	0.05	8.6	6.81	6.81
mg/L	1		< 1	< 1
		·		
mg/L	0.001	0.001	< 0.001	< 0.001
	mg/L mg/L mg/L Mg/L No unit mg/L	Units RL mg/L 0.00007 mg/L 0.00001 mg/L 0.00001 mg/L 0.0002 Mg/L 0.002 Mg/L 1	Sample Na Sample Ma Sample Ma Sample Da Units RL L1 mg/L 0.00007 0.005 mg/L 0.00002 0.005 mg/L 0.0001 0.006 mg/L 0.002 0.02 Mo unit 0.05 8.6 mg/L 1 0.00	Sample Name SW2 Sample Matrix Surface Water Sample Date 28/09/2023 Units RL L1 Result mg/L 0.00007 0.00114 0.000114 mg/L 0.00001 0.005 0.00031 mg/L 0.002 0.02 0.003 mg/L 0.002 0.02 0.003 mg/L 0.005 6.81 0.011

EXCEEDANCE SUMMARY

PWQC	D_L / WATER
1	- Table 2 -
Gener	al - July 1999
Pif	BS 3303E
Parameter Method Units Result	L1
2	
2	
Copper SM 3030/EPA 200.8 mg/L 0.0012	0.001
Iron SM 3030/EPA 200.8 mg/L 0.973	0.3
Phosphorus SM 3030/EPA 200.8 mg/L 0.018	0.01
DUP	
Copper SM 3030/EPA 200.8 mg/L 0.0045	0.001
Iron SM 3030/EPA 200.8 mg/L 1.01	0.3
Phosphorus SM 3030/EPA 200.8 mg/L 0.014	0.01

Alkalinity

Method: SM 2320 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Alkalinity	EWL0091-OCT23	mg/L as CaCO3	2	< 2	2	20	104	80	120	NA		
Alkalinity	EWL0130-OCT23	mg/L as CaCO3	2	< 2	0	20	100	80	120	NA		

Ammonia by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	_CS/Spike Blank Matrix Spike / Re			<i>i</i> .	
	Reference			Blank	RPD	AC	Spike	Recove (%	ry Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Ammonia+Ammonium (N)	SKA0037-OCT23	mg/L	0.04	<0.04	ND	10	99	90	110	99	75	125

Anions by discrete analyzer

Method: US EPA 325.2 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recover (%	•	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Chloride	DIO5042-OCT23	mg/L	1	<1	1	20	99	80	120	84	75	125
Sulphate	DIO5042-OCT23	mg/L	2	<2	5	20	104	80	120	100	75	125

Anions by IC

Method: EPA300/MA300-Ions1.3 | Internal ref.: ME-CA-[ENV]IC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recove	-	Spike Recovery	Recove	ry Limits %)
					(%)	Recovery (%)	Low	High	(%)	Low	High	
Nitrite (as N)	DIO0093-OCT23	mg/L	0.03	<0.03	ND	20	99	90	110	92	75	125
Nitrate (as N)	DIO0093-OCT23	mg/L	0.06	<0.06	1	20	99	90	110	102	75	125

Biochemical Oxygen Demand

Method: SM 5210 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	latrix Spike / Re	:
Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery		ry Limits 6)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Biochemical Oxygen Demand (BOD5)	BOD0007-OCT23	mg/L	2	< 2	NV	30	101	70	130	NV	70	130

Carbon by SFA

Method: SM 5310 | Internal ref.: ME-CA-IENVISFA-LAK-AN-009

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	latrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Dissolved Organic Carbon	SKA0042-OCT23	mg/L	1	<1	0	20	103	90	110	93	75	125
Dissolved Organic Carbon	SKA0052-OCT23	mg/L	1	<1	8	20	104	90	110	82	75	125

Chemical Oxygen Demand

Method: HACH 8000 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-009

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	latrix Spike / Re	f.
	Reference			Blank	RPD AC (%)	Spike	Recove	ry Limits %)	Spike Recovery		ory Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Chemical Oxygen Demand	EWL0066-OCT23	mg/L	8	<8	ND	20	110	80	120	98	75	125

Colour

Method: SM 2120 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		N	latrix Spike / Ref	:
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recove	ry Limits 6)
					(%)	Recovery (%)	Low	High	(%)	Low	High	
Colour	EWL0237-OCT23	TCU	3	< 3	ND	10	100	80	120	NA		

Conductivity

Method: SM 2510 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC Spike (%) Recovery	Recove	-	Spike Recovery		ry Limits %)	
						(%)	(%)	Low	High	(%)	Low	High
Conductivity	EWL0091-OCT23	uS/cm	2	< 2	0	20	99	90	110	NA		
Conductivity	EWL0130-OCT23	uS/cm	2	< 2	0	20	100	90	110	NA		

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike Recovery	Recover (%	ry Limits 6)	Spike Recovery	Recove	ry Limits %)
						(%)	(%)	Low	High	(%)	Low	High
Silver (total)	EMS0033-OCT23	mg/L	0.00005	<0.00005	ND	20	98	90	110	90	70	130
Aluminum (0.2µm)	EMS0033-OCT23	mg/L	0.001	<0.001	15	20	96	90	110	110	70	130
Arsenic (total)	EMS0033-OCT23	mg/L	0.0002	<0.0002	ND	20	99	90	110	97	70	130
Barium (total)	EMS0033-OCT23	mg/L	0.00008	<0.00008	5	20	97	90	110	93	70	130
Beryllium (total)	EMS0033-OCT23	mg/L	0.000007	<0.000007	ND	20	97	90	110	105	70	130
Boron (total)	EMS0033-OCT23	mg/L	0.002	<0.002	0	20	93	90	110	96	70	130
Bismuth (total)	EMS0033-OCT23	mg/L	0.00001	<0.00001	ND	20	94	90	110	96	70	130
Calcium (total)	EMS0033-OCT23	mg/L	0.01	<0.01	1	20	98	90	110	96	70	130
Cadmium (total)	EMS0033-OCT23	mg/L	0.000003	<0.000003	4	20	99	90	110	99	70	130
Cobalt (total)	EMS0033-OCT23	mg/L	0.000004	<0.000004	1	20	97	90	110	96	70	130
Chromium (total)	EMS0033-OCT23	mg/L	0.00008	<0.00008	15	20	99	90	110	103	70	130
Copper (total)	EMS0033-OCT23	mg/L	0.0002	<0.0002	6	20	98	90	110	103	70	130
Iron (total)	EMS0033-OCT23	mg/L	0.007	<0.007	1	20	100	90	110	100	70	130
Potassium (total)	EMS0033-OCT23	mg/L	0.009	<0.009	12	20	102	90	110	85	70	130
Magnesium (total)	EMS0033-OCT23	mg/L	0.001	<0.001	3	20	105	90	110	99	70	130
Manganese (total)	EMS0033-OCT23	mg/L	0.00001	<0.00001	8	20	96	90	110	99	70	130
Molybdenum (total)	EMS0033-OCT23	mg/L	0.00004	<0.00004	ND	20	100	90	110	99	70	130
Sodium (total)	EMS0033-OCT23	mg/L	0.01	<0.01	ND	20	100	90	110	96	70	130
Nickel (total)	EMS0033-OCT23	mg/L	0.0001	<0.0001	3	20	96	90	110	91	70	130
Lead (total)	EMS0033-OCT23	mg/L	0.00009	<0.00009	6	20	99	90	110	101	70	130

Metals in aqueous samples - ICP-MS (continued)

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-IENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LCS	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover (%	•	Spike Recovery		ery Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Phosphorus (total)	EMS0033-OCT23	mg/L	0.003	<0.003	11	20	97	90	110	NV	70	130
Antimony (total)	EMS0033-OCT23	mg/L	0.0009	<0.0009	ND	20	96	90	110	103	70	130
Selenium (total)	EMS0033-OCT23	mg/L	0.00004	<0.00004	7	20	96	90	110	116	70	130
Silicon (total)	EMS0033-OCT23	mg/L	0.02	<0.02	7	20	101	90	110	NV	70	130
Tin (total)	EMS0033-OCT23	mg/L	0.00006	<0.00006	3	20	100	90	110	NV	70	130
Strontium (total)	EMS0033-OCT23	mg/L	0.00008	<0.00008	2	20	96	90	110	93	70	130
Titanium (total)	EMS0033-OCT23	mg/L	0.00007	<0.00005	10	20	99	90	110	NV	70	130
Uranium (total)	EMS0033-OCT23	mg/L	0.000002	<0.00002	0	20	93	90	110	94	70	130
Vanadium (total)	EMS0033-OCT23	mg/L	0.00001	<0.00001	16	20	98	90	110	95	70	130
Zinc (total)	EMS0033-OCT23	mg/L	0.002	<0.002	6	20	98	90	110	116	70	130

pН

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recover	•	Spike Recovery	Recover (%	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0091-OCT23	No unit	0.05	NA	0		100			NA		
рН	EWL0130-OCT23	No unit	0.05	NA	0		101			NA		

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	latrix Spike / Re	
	Reference	Reference Blank	Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ry Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0046-OCT23	mg/L	0.001	<0.001	0	10	103	80	120	101	75	125

Reactive Phosphorus by SFA

Method: SM 4500-P F | Internal ref.: ME-CA-IENVISFA-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duplicate LC	S/Spike Blank		M	latrix Spike / Ref	:		
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Reactive Phosphorous (o-phosphate as P)	SKA0038-OCT23	mg/L	0.03	<0.03	ND	10	98	90	110	NV	75	125

Solids Analysis

Method: SM 2540C | Internal ref.: ME-CA-IENVIEWL-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		LCS/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD	AC Spike		Recovery Limits (%)		Spike Recovery	Recovery Limits (%)			
						(%)	Recovery (%)	Low	High	(%)	Low	High		
Total Dissolved Solids	EWL0094-OCT23	mg/L	30	<30	0	20	104	80	120	NA				

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	LCS/Spike Blank		Matrix Spike / Ref.		ıf.
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery		ery Limits %)
			(%)	Recovery (%)	Low	High	(%)	Low	High			
Total Suspended Solids	EWL0069-OCT23	mg/L	2	< 2	1	10	96	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		LCS/Spike Blank		N	Matrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits	Spike	Recove	ry Limits		
						(%)	Recovery	(%)	Recovery	(9	%)		
						(70)	(%)	Low	High	(%)	Low	High		
Total Kjeldahl Nitrogen (N)	SKA5023-OCT23	mg/L	0.05	<0.05	1	10	102	90	110	NV	75	125		

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
 - ↑ Reporting limit raised.
 - ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

C	GS		Request for Laborator	y Services	and CHA	IN OF C	USTOD	Y (Gene	eral)						
3	U 5	SGS Environmental Services - Lakefield: 185 Concession St., Lakefield, ON KOL 2H0 Phone: 705-852-2000 Toll Free: 877-747-7858 f SGS Environmental Services - London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060													
	- it - a barrie	SGS Environmental Services - Lond	on: 657 Consortium Court, London, Laboratory Infe			4500 Toll Fi	ree: 877-848	3-8060 Fax:	519-672-0361	Web: www.ca.sgs.com	n {4}	100			
eceived	Date (mm/dd/y	MY): 0CT 0 2 2023			LAB LIMS	#: O	c+-1	502	7	1					
	Time (After Hou	00100 2020		NA	Temperatu		Receipt (c): 8	9.9	23					
	Company:	Pinchin	Billing & Repo	rting Inform		Quote #	2. 17	/	2023 544	/		1			
	Attention:	Alana Valle				1						/			
(3):		662 Falconbridge Rd, Unit 3				Attache	d Param	eter List:		YES		NO			
Invoice/Receipt to {3}:	Address:	Sudbury, Ontario	(1568-)	54		Turnarou	nd Time								
	P3A 4S4					1000000000		ound Tim	e Required	1?	YES				
		avalle@pinchin.com	70.0	1		Specify:				-	-	_			
Project	Name/Number:	225335.07-Croft Landfill SW	P.O. #:			* Rush TA	Requests Re	equire Lab Ap	pproval						
1		Clie	nt Information/Report To:						(Client Lab #:					
Con	npany Name:					Phone	Numbe	er:	7	705.507.9479					
Co	ontact Name:					Fax Nu	mber:	-				-			
						-		-		-	-	_			
_	Address:					E-mail	:		3						
	Copy to:														
195 117 2		タームに言語で、「読いたけでは	Sample	Information				il		end Charles (1996)	1221				
						(please enter the analys				lysis Requested ysis required below and chee is applies to each sample)					
		Sample Identifier	Date Sampled (mm/dd/yy)	Time Sampled	# of Bottles	Field Filtered	Field Temp (°C)	Hd bl		SW Package		an Burne			
						Fie	Fie	Field	10-00 - 10	NS .		_			
W1							12			x		-			
W2			9/28/23	4-7	10	N				x					
W3			H w l							x		_			
W DU	P		9/28/23	4-7	10	N				x		-			
			1100100												
	2														
5															
-	ampled Du (4)	(Nama) A L & 10 & 1 / 11 -						Date:							
		(Name) Alana Valle		(Signature)						42 120	(mm/dd/)				
ote: {1} S	Submission of sam ion for completion	(Name) A CAR V aller ples to SGS is acknowledgement that you have of work. Signatures may appear on this form or additional cost. Fax is available upon request {	been provided direction on sar be retained on file in the contra	ct, or in an alte	mative forma	at (e.g. ship	oping docu	ments). {3	Submission o 3} Results ma	ay be sent by email		d			

Revision #: 2.3 Date of Issue: 24 Jun. 2014

v

10:30 RTN 334313747654

J&

CA15028-OCT23 R

225335.007 Croft Landfill GW

Prepared for

Pinchin Ltd

First Page

CLIENT DETAILS		LABORATORY DETAILS	
Client	Pinchin Ltd	Project Specialist	Maarit Wolfe, Hon.B.Sc
		Laboratory	SGS Canada Inc.
Address	662 Falconbridge Road, Unit 3, Sudbury	Address	185 Concession St., Lakefield ON, K0L 2H0
	Canada, P3A 4S4		
	Phone: 705-521-0560. Fax:		
Contact	Alana Valle	Telephone	705-652-2000
Telephone	705-521-0560	Facsimile	705-652-6365
Facsimile		Email	Maarit.Wolfe@sgs.com
Email	avalle@Pinchin.com	SGS Reference	CA15028-OCT23
Project	225335.007 Croft Landfill GW	Received	10/03/2023
Order Number		Approved	10/20/2023
Samples	Ground Water (9)	Report Number	CA15028-OCT23 R
		Date Reported	10/20/2023

COMMENTS

Temperature of Sample upon Receipt: 9 degrees C Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: n/a

NO2 RL raised for sample #10 BH10 due to sample matrix

SIGNATORIES

Maarit Wolfe, Hon.B.Sc

Luveye

SGS Canada Inc. 185 Concession St., Lakefield ON, K0L 2H0

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-9
Exceedance Summary	10-11
QC Summary	12-21
Legend	22
Annexes	23

Client: Pinchin Ltd

Project: 225335.007 Croft Landfill GW

Project Manager: Alana Valle

Samplers:	Alana Valle

ATRIX: WATER				Sample Number	7	8	9	10	11	12	13	14
				Sample Name	BH1	BH8	BH9	BH10	BH11	BH12	BH13	BH14
= ODWS_AO_OG / WATER / Table 4 - Drinking Water	- Reg 0.169_03			Sample Matrix	Ground Water							
= ODWS_MAC / WATER / Table 1,2 and 3 - Drinking W	/ater - Reg 0.169_03			Sample Date	28/09/2023	28/09/2023	28/09/2023	28/09/2023	28/09/2023	28/09/2023	28/09/2023	28/09/2023
Parameter	Units	RL	L1	L2	Result							
cid Rock Drainage												
pH Check <2	pH	0.05			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
eneral Chemistry												
Biochemical Oxygen Demand (BOD5)	mg/L	2			< 4↑	< 4↑	< 4↑	10	8	< 4↑	< 4↑	< 4↑
Prep BOD	Prep	no			45203	45203	45203	45203	45203	45203	45203	45203
Total Suspended Solids	mg/L	2			85	64	447	313	25	805	284	684
Alkalinity	mg/L as CaCO3	2	500		82	27	171	445	48	61	76	78
Conductivity	uS/cm	2			472	74	535	2670	227	162	207	229
Total Dissolved Solids	mg/L	30	500		397	91	343	1550	171	109	120	226
Chemical Oxygen Demand	mg/L	8			44	15	67	33	49	9	11	< 8
Turbidity	NTU	0.10	5	1	21	29	350	4.3	16	160	55	80
Total Kjeldahl Nitrogen (N)	as N mg/L	0.05			0.73	0.16	2.92	9.63	1.90	0.18	0.38	0.15
Ammonia+Ammonium (N)	as N mg/L	0.04			0.20	< 0.04	2.29	10.1	1.14	0.06	0.09	0.06
Total Reactive Phosphorous (o-phosphate as P)	mg/L	0.03			< 0.03	< 0.03	0.04	< 0.03	< 0.03	0.06	< 0.03	< 0.03
Dissolved Organic Carbon	mg/L	1	5		12	2	19	15	16	3	5	2

0.000007

0.00001

0.002

0.01

0.000003

0.000004

0.00008

0.0002

0.007

0.009

0.001

0.00001

0.00004

1

0.3

0.05

mg/L

Beryllium (dissolved)

Bismuth (dissolved)

Calcium (dissolved)

Cadmium (dissolved)

Chromium (dissolved)

Potassium (dissolved)

Magnesium (dissolved)

Manganese (dissolved)

Molybdenum (dissolved)

Copper (dissolved)

Iron (dissolved)

Cobalt (dissolved)

Boron (dissolved)

FINAL REPORT

Client: Pinchin Ltd

0.000031

< 0.00001

0.444

12.2

0.000041

0.00203

0.00114

0.0042

10.3

2.15

0.326

0.00100

0.000033

< 0.00001

0.104

22.2

0.000007

0.000227

0.00037

0.0016

1.26

2.11

0.322

0.00139

0.000044

< 0.00001

0.070

28.6

0.000056

0.000261

0.00032

0.0068

0.416

1.26

3.52

0.412

0.00021

0.000023

< 0.00001

0.046

29.6

< 0.000003

0.000293

0.00014

0.0014

2.36

4.90

0.489

0.00046

				Project: 225335.007 Croft Landfill GW									
								Project Mar	nager: Alana Valle				
								Sam	iplers: Alana Valle				
MATRIX: WATER			£	Sample Number	7	8	9	10	11	12	13	14	
				Sample Name	BH1	BH8	BH9	BH10	BH11	BH12	BH13	BH14	
L1 = ODWS_AO_OG / WATER / Table 4 - Drir	rinking Water - Reg 0.169_03			Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water					
2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking Water - Reg 0.169_03				Sample Date	28/09/2023	28/09/2023	28/09/2023	28/09/2023	28/09/2023	28/09/2023	28/09/2023	28/09/2023	
Parameter	Units	RL	L1	L2	Result	Result	Result	Result	Result	Result	Result	Result	
Metals and Inorganics													
Phosphorus (total)	mg/L	0.03	1		0.03	0.07	0.08	< 0.03	0.07	0.31	0.06	0.07	
Sulphate	mg/L	2	500		94	8	15	20	25	10	4	8	
Nitrite (as N)	as N mg/L	0.03		1	< 0.03	< 0.03	< 0.03	< 0.3↑	< 0.03	< 0.03	< 0.03	< 0.03	
Nitrate (as N)	as N mg/L	0.06	1	10	< 0.06	< 0.06	< 0.06	5.73	0.07	< 0.06	< 0.06	< 0.06	
Hardness (dissolved)	mg/L as CaCO3	0.05	100	/	173	28.8	184	584	39.4	64.0	85.9	94.0	
Silver (dissolved)	mg/L	0.00005	[< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	
Aluminum (dissolved)	mg/L	0.001	[0.202	0.038	0.141	0.031	0.262	0.046	0.051	0.006	
Arsenic (dissolved)	mg/L	0.0002		0.01	0.0024	0.0005	0.0015	0.0006	0.0007	0.0012	0.0003	0.0003	
Barium (dissolved)	mg/L	0.00008	[1	0.161	0.0319	0.0875	0.299	0.0362	0.0461	0.0551	0.0402	
				+									

0.000033

< 0.00001

0.584

60.4

0.000029

0.0120

0.00223

0.0023

23.9

11.9

7.94

2.56

0.00138

0.000013

< 0.00001

1.19

186

0.000074

0.00299

0.00169

0.0090

0.021

51.7

29.0

0.00108

0.000023

0.00002

0.012

6.76

0.000045

0.000647

0.00026

0.0069

0.047

2.01

2.89

0.00999

0.00074

0.000065

< 0.00001

0.152

52.4

< 0.000003

0.0370

0.00160

0.0024

40.5

6.19

10.1

3.69

0.00070

5

0.005

0.05

Client: Pinchin Ltd

Project: 225335.007 Croft Landfill GW

Project Manager: Alana Valle

							Samp	olers: Alana Valle					
			Sample Number	7	8	9	10	11	12	13	14		
			Sample Name	BH1	BH8	BH9	BH10	BH11	BH12	BH13	BH14		
g O.169_03			Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water		
- Reg O.169_03			Sample Date	28/09/2023	28/09/2023	28/09/2023	28/09/2023	28/09/2023	28/09/2023	28/09/2023	28/09/2023		
Units	RL	L1	L2	Result	Result	Result	Result	Result	Result	Result	Result		
mg/L	0.01	200	20	17.7	2.38	27.6	271	25.4	5.87	5.55	6.45		
mg/L	0.02			6.98	4.38	4.34	4.84	1.71	5.40	3.64	9.66		
mg/L	0.0001			0.0037	0.0034	0.0024	0.0026	0.0019	0.0006	0.0011	0.0004		
mg/L	0.00009		0.01	0.00015	< 0.00009	0.00013	< 0.00009	0.00010	< 0.00009	< 0.00009	< 0.00009		
mg/L	0.0009		0.006	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009		
mg/L	0.00004		0.05	0.00083	< 0.00004	0.00030	0.00025	0.00037	0.00005	0.00015	< 0.00004		
mg/L	0.00006			0.00010	0.00008	0.00013	0.00016	0.00010	0.00011	0.00006	< 0.00006		
mg/L	0.00008			0.278	0.0295	0.219	0.901	0.0407	0.0937	0.0564	0.128		
mg/L	0.000005			< 0.000005	0.000024	0.000025	0.000080	0.000041	< 0.000005	0.000021	< 0.000005		
mg/L	0.00007			0.0120	0.00105	0.00262	0.00090	0.00240	0.00058	0.00043	0.00022		
mg/L	0.000002		0.02	0.00212	0.000152	0.000669	0.00423	0.000598	0.000306	0.00605	0.000292		
mg/L	0.00001			0.00554	0.00027	0.00370	0.00051	0.00073	0.00052	0.00043	0.00020		
mg/L	0.002	5		0.003	0.014	0.004	0.003	0.003	0.003	0.005	< 0.002		
Ì	- Reg O.169_03 Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	- Reg 0.169_03 Units RL mg/L 0.01 mg/L 0.02 mg/L 0.0001 mg/L 0.0009 mg/L 0.0009 mg/L 0.00004 mg/L 0.00004 mg/L 0.00006 mg/L 0.00008 mg/L 0.00008 mg/L 0.00007 mg/L 0.00002 mg/L 0.00001	- Reg 0.169_03 - Reg 0.169_03 Units RL L1 mg/L 0.01 200 mg/L 0.02 mg/L 0.0001 mg/L 0.0009 mg/L 0.0009 mg/L 0.00004 mg/L 0.00004 mg/L 0.00008 mg/L 0.00005 mg/L 0.00007 mg/L 0.00007 mg/L 0.00007 mg/L 0.00007	Auge of Life Sample Matrix Areg 0.169_03 Sample Date Units RL L1 L2 mg/L 0.01 200 20 mg/L 0.02 20 20 mg/L 0.001 200 20 mg/L 0.0009 0.01 200 mg/L 0.0009 0.010 200 mg/L 0.00004 0.0006 20 mg/L 0.00006 0.01 200 mg/L 0.00006 20 20 mg/L 0.00006 20 20 mg/L 0.00007 20 20 mg/L 0.00007 20 20 mg/L 0.00007 0.02 20 mg/L 0.00001 20 20	Sample Name BH1 g0.169_03 Sample Matrix Ground Water -Reg 0.169_03 Sample Date 28/09/2023 Imits RL L1 L2 Result mg/L 0.01 200 20 17.7 mg/L 0.02 20 17.7 mg/L 0.0001 0.0037 6.98 mg/L 0.0009 0.01 0.0037 mg/L 0.0009 0.01 0.0001 mg/L 0.0009 0.01 0.00015 mg/L 0.00004 0.05 0.00083 mg/L 0.00005 0.0278 0.278 mg/L 0.00007 0.012 0.0120 mg/L 0.00007 0.02 0.0212 mg/L 0.00001 0.02 0.02	Sample Name BH1 BH8 g.0.169_03 Sample Matrix Ground Water Ground Water . Reg 0.169_03 Sample Date 28/09/2023 28/09/2023 Units RL L1 L2 Result Result mg/L 0.01 200 20 17.7 2.38 mg/L 0.02 20 17.7 2.38 mg/L 0.02 0.0 6.98 4.38 mg/L 0.001 0.0037 0.0034 mg/L 0.0009 0.01 0.00015 <0.0009	Sample Name BH1 BH8 BH9 g.0.169_03 Sample Matrix Ground Water Ground Water Ground Water .Reg 0.169_03 Sample Date 28/09/2023 28/09/2023 28/09/2023 28/09/2023 Units RL L1 L2 Result Result Result mg/L 0.01 200 20 17.7 2.38 27.6 mg/L 0.02 0 17.7 2.38 4.34 mg/L 0.001 0.0037 0.0034 0.0024 mg/L 0.0009 0.01 0.00015 <0.0009	Sample Number 7 8 9 10 g 0.169_03 Sample Name BH1 BH8 BH9 BH10 g 0.169_03 Sample Matrix Ground Water Ground Water Ground Water Ground Water Ground Water Ground Water 28/09/2023 </td <td>Sample Number 7 8 9 10 11 sample Number Sample Nume BH1 BH8 BH9 BH10 BH11 sample Number Sample Nume Ground Water 28/09/2023 mg/L 0.01 L2 Result Result Result 10.01 0.0024 0.0026 0.00016 <t< td=""><td>Sample Number 7 8 9 10 11 12 Sample Number Sample Number 7 8 9 10 11 12 Sample Number Sample Matrix Ground Water <t< td=""><td>Sample Number 7 8 9 10 11 12 13 10 - 0.000 Sample Number BH1 BH8 BH9 BH10 BH1 BH3 BH3 BH30 BH10 BH11 BH12 BH31 10 - 0.001 Sample Number Ground Water G</td></t<></td></t<></td>	Sample Number 7 8 9 10 11 sample Number Sample Nume BH1 BH8 BH9 BH10 BH11 sample Number Sample Nume Ground Water 28/09/2023 mg/L 0.01 L2 Result Result Result 10.01 0.0024 0.0026 0.00016 <t< td=""><td>Sample Number 7 8 9 10 11 12 Sample Number Sample Number 7 8 9 10 11 12 Sample Number Sample Matrix Ground Water <t< td=""><td>Sample Number 7 8 9 10 11 12 13 10 - 0.000 Sample Number BH1 BH8 BH9 BH10 BH1 BH3 BH3 BH30 BH10 BH11 BH12 BH31 10 - 0.001 Sample Number Ground Water G</td></t<></td></t<>	Sample Number 7 8 9 10 11 12 Sample Number Sample Number 7 8 9 10 11 12 Sample Number Sample Matrix Ground Water Ground Water <t< td=""><td>Sample Number 7 8 9 10 11 12 13 10 - 0.000 Sample Number BH1 BH8 BH9 BH10 BH1 BH3 BH3 BH30 BH10 BH11 BH12 BH31 10 - 0.001 Sample Number Ground Water G</td></t<>	Sample Number 7 8 9 10 11 12 13 10 - 0.000 Sample Number BH1 BH8 BH9 BH10 BH1 BH3 BH3 BH30 BH10 BH11 BH12 BH31 10 - 0.001 Sample Number Ground Water G		

Client: Pinchin Ltd

Project: 225335.007 Croft Landfill GW

Project Manager: Alana Valle

ATRIX: WATER			;	Sample Number	7	8	9	10	11	12	13	14
				Sample Name	BH1	BH8	BH9	BH10	BH11	BH12	BH13	BH14
1 = ODWS_AO_OG / WATER / Table 4 - Drinking Wate	er - Reg O.169_03			Sample Matrix	Ground Water	Ground Wate						
2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking	Water - Reg 0.169_03			Sample Date	28/09/2023	28/09/2023	28/09/2023	28/09/2023	28/09/2023	28/09/2023	28/09/2023	28/09/2023
Parameter	Units	RL	L1	L2	Result	Result						
Other (ORP)												
рН	No unit	0.05	8.5		6.74	7.14	7.55	7.72	7.28	7.38	7.47	7.60
Chloride	mg/L	1	250		36	< 1	52	560	25	6	15	21
Phenols												
4AAP-Phenolics	mg/L	0.002			< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
IATRIX: WATER			:	Sample Number	15							
				Sample Name	GW DUP							
1 = ODWS_AO_OG / WATER / Table 4 - Drinking Wate	er - Reg 0.169_03			Sample Matrix	Ground Water							
2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking	Water - Reg 0.169_03			Sample Date	28/09/2023							
Parameter	Units	RL	L1	L2	Result							
cid Rock Drainage												
pH Check <2	pH	0.05			1.00							
General Chemistry												
Biochemical Oxygen Demand (BOD5)	mg/L	2			< 4↑							
Prep BOD	Prep	no			45203							
Total Suspended Solids	mg/L	2			264							
Alkalinity	mg/L as CaCO3	2	500		72							
Conductivity	uS/cm	2			195							
Total Dissolved Solids	mg/L	30	500		117							
Chemical Oxygen Demand	mg/L	8			19							
Turbidity	NTU	0.10	5	1	40							
Total Kjeldahl Nitrogen (N)	as N mg/L	0.05			0.25	-						

Client: Pinchin Ltd

Project: 225335.007 Croft Landfill GW

Project Manager: Alana Valle

		-	Pomple Number	15
			•	15
			•	GW DUP
Reg 0.169_03			•	Ground Water
ater - Reg O.169_03				28/09/2023
Units	RL	L1	L2	Result
		1		
as N mg/L	0.04			0.06
mg/L	0.03			< 0.03
mg/L	1	5		5
mg/L	0.03			0.10
mg/L	2	500		4
as N mg/L	0.03		1	< 0.03
as N mg/L	0.06		10	< 0.06
mg/L as CaCO3	0.05	100		88.4
mg/L	0.00005			0.00006
mg/L	0.001			0.051
mg/L	0.0002		0.01	0.0002
mg/L	0.00008		1	0.0557
mg/L	0.000007			0.000041
mg/L	0.00001			< 0.00001
mg/L	0.002		5	0.056
mg/L	0.01			29.4
mg/L	0.000003		0.005	0.000065
mg/L	0.000004			0.000252
mg/L	0.00008		0.05	0.00034
mg/L	0.0002	1		0.0092
	Atter - Reg O.169_03 Units Cas N mg/L mg/L mg/L mg/L as N mg/L as N mg/L as N mg/L as N mg/L as N mg/L mg/L as CaCO3 mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Atter - Reg O. 169_03 Units RL as N mg/L 0.04 mg/L 0.03 mg/L 0.03 mg/L 1 mg/L 1 mg/L 0.03 as N mg/L 0.03 as N mg/L 0.00 mg/L 0.000 mg/L 0.00001 mg/L 0.00003 mg/L 0.00003 mg/L 0.00003 mg/L 0.00003 mg/L 0.00003 <td>Reg 0.169_03 Inits RL L1 as N mg/L 0.04 </td> <td>Sample Date Units RL L1 L2 as N mg/L 0.04 </td>	Reg 0.169_03 Inits RL L1 as N mg/L 0.04	Sample Date Units RL L1 L2 as N mg/L 0.04

Client: Pinchin Ltd

Project: 225335.007 Croft Landfill GW

Project Manager: Alana Valle

					45
IATRIX: WATER				Sample Number	15
				Sample Name	GW DUP
1 = ODWS_AO_OG / WATER / Table 4 - Drinking Water - Reg O.	MAC / WATER / Table 1,2 and 3 - Drinking Water - Reg 0.169_03 other Units RL Ind Inorganics (continued) mg/L 0.007 ssolved) mg/L 0.009 sium (dissolved) mg/L 0.001 nese (dissolved) mg/L 0.0004 enum (dissolved) mg/L 0.0004 idissolved) mg/L 0.0004 indissolved) mg/L 0.0004 iny (dissolved) mg/L 0.0004			Sample Matrix	Ground Water
2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking Water - Re	Reg O.169_03			Sample Date	28/09/2023
Parameter	Units	RL	L1	L2	Result
Netals and Inorganics (continued)					
Iron (dissolved)	mg/L	0.007	0.3		0.445
Potassium (dissolved)	mg/L	0.009			1.27
Magnesium (dissolved)	mg/L	0.001			3.63
Manganese (dissolved)	mg/L	0.00001	0.05		0.420
Molybdenum (dissolved)	mg/L	0.00004			0.00013
Sodium (dissolved)	mg/L	0.01	200	20	5.68
Silicon (dissolved)	mg/L	0.02			3.75
Nickel (dissolved)	mg/L	0.0001			0.0014
Lead (dissolved)	mg/L	0.00009		0.01	< 0.00009
Antimony (dissolved)	mg/L	0.0009		0.006	< 0.0009
Selenium (dissolved)	mg/L	0.00004		0.05	0.00011
Tin (dissolved)	mg/L	0.00006			0.00011
Strontium (dissolved)	mg/L	0.00008			0.0583
Thallium (dissolved)	mg/L	0.000005			0.000020
Titanium (dissolved)	mg/L	0.00007			0.00046
Uranium (dissolved)	mg/L	0.000002		0.02	0.00628
Vanadium (dissolved)	mg/L	0.00001			0.00041
Zinc (dissolved)	mg/L	0.002	5		0.006

Client: Pinchin Ltd

Project: 225335.007 Croft Landfill GW

Project Manager: Alana Valle

MAT	TRIX: WATER			S	ample Number	15
					Sample Name	GW DUP
L1 = 0	DDWS_AO_OG / WATER / Table 4 - D	Prinking Water - Reg O.169_03			Sample Matrix	Ground Water
L2 = 0	DDWS_MAC / WATER / Table 1,2 and	3 - Drinking Water - Reg O.169_03			Sample Date	28/09/2023
Pa	arameter	Units	RL	L1	L2	Result
Othe	er (ORP)					
pl	н	No unit	0.05	8.5		7.25
С	Chloride	mg/L	1	250		15
Phe	nols					
4/	AAP-Phenolics	mg/L	0.002			< 0.002

EXCEEDANCE SUMMARY

				ODWS_AO_OG / WATER / Table 4 - Drinking Water - Reg O.169_03	ODWS_MAC / WATER / Table 1,2 and 3 - Drinking Water - Reg 0.169_03
Parameter	Method	Units	Result	L1	L2
H1					
Turbidity	SM 2130	NTU	21	5	1
Hardness (dissolved)	SM 3030/EPA 200.7	mg/L as CaCO3	173	100	
Iron (dissolved)	SM 3030/EPA 200.8	mg/L	40.5	0.3	
Manganese (dissolved)	SM 3030/EPA 200.8	mg/L	3.69	0.05	
Dissolved Organic Carbon	SM 5310	mg/L	12	5	
H8					
Turbidity	SM 2130	NTU	29	5	1
H9					
Turbidity	SM 2130	NTU	350	5	1
Hardness (dissolved)	SM 3030/EPA 200.7	mg/L as CaCO3	184	100	
Iron (dissolved)	SM 3030/EPA 200.8	mg/L	23.9	0.3	
Manganese (dissolved)	SM 3030/EPA 200.8	mg/L	2.56	0.05	
Sodium (dissolved)	SM 3030/EPA 200.8	mg/L	27.6		20
Dissolved Organic Carbon	SM 5310	mg/L	19	5	
H10					
Turbidity	SM 2130	NTU	4.3		1
Total Dissolved Solids	SM 2540C	mg/L	1550	500	
Hardness (dissolved)	SM 3030/EPA 200.7	mg/L as CaCO3	584	100	
Manganese (dissolved)	SM 3030/EPA 200.8	mg/L	1.80	0.05	
Sodium (dissolved)	SM 3030/EPA 200.8	mg/L	271	200	20
Dissolved Organic Carbon	SM 5310	mg/L	15	5	
Chloride	US EPA 325.2	mg/L	560	250	
H11					
Turbidity	SM 2130	NTU	16	5	1
Iron (dissolved)	SM 3030/EPA 200.8	mg/L	0.834	0.3	
Manganese (dissolved)	SM 3030/EPA 200.8	mg/L	0.326	0.05	
Sodium (dissolved)	SM 3030/EPA 200.8	mg/L	25.4		20
Dissolved Organic Carbon	SM 5310	mg/L	16	5	
112					
Turbidity	SM 2130	NTU	160	5	1
Iron (dissolved)	SM 3030/EPA 200.8	mg/L	1.37	0.3	
Manganese (dissolved)	SM 3030/EPA 200.8	mg/L	0.322	0.05	

BH13

Turbidity	SM 2130	NTU	55	5	1
Iron (dissolved)	SM 3030/EPA 200.8	mg/L	0.416	0.3	

EXCEEDANCE SUMMARY

Parameter	Method	Units	Result	ODWS_AO_OG / WATER / Table 4 - Drinking Water - Reg 0.169_03 L1	ODWS_MAC / WATER / Table 1,2 and 3 - Drinking Water - Reg 0.169_03 L2
BH13 (continued)					
Manganese (dissolved)	SM 3030/EPA 200.8	mg/L	0.412	0.05	
BH14					
Turbidity	SM 2130	NTU	80	5	1
Iron (dissolved)	SM 3030/EPA 200.8	mg/L	1.50	0.3	
Manganese (dissolved)	SM 3030/EPA 200.8	mg/L	0.489	0.05	
GW DUP					
Turbidity	SM 2130	NTU	40	5	1
Iron (dissolved)	SM 3030/EPA 200.8	mg/L	0.445	0.3	
Manganese (dissolved)	SM 3030/EPA 200.8	mg/L	0.420	0.05	

Alkalinity

Method: SM 2320 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / R	ef.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recovery Limits (%) Low High	Spike Recovery		very Limits (%)	
					(70)	(%)	Low	High	(%)	Low	High	
Alkalinity	EWL0130-OCT23	mg/L as CaCO3	2	< 2	0	20	100	80	120	NA		

Ammonia by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	atrix Spike / Re	f.
	Reference	leference	Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery		ery Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Ammonia+Ammonium (N)	SKA0037-OCT23	mg/L	0.04	<0.04	ND	10	99	90	110	99	75	125
Ammonia+Ammonium (N)	SKA0054-OCT23	mg/L	0.04	<0.04	2	10	99	90	110	98	75	125

Anions by discrete analyzer

Method: US EPA 325.2 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Re	ıf.
	Reference			Blank	RPD	AC	Spike	Recover (%	•	Spike Recovery		ery Limits (%)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Chloride	DIO5042-OCT23	mg/L	1	<1	1	20	99	80	120	84	75	125
Sulphate	DIO5042-OCT23	mg/L	2	<2	5	20	104	80	120	100	75	125

Anions by IC

Method: EPA300/MA300-Ions1.3 | Internal ref.: ME-CA-[ENV]IC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	i.
	Reference			Blank	RPD	AC	Spike	Recover	_	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Nitrite (as N)	DIO0092-OCT23	mg/L	0.03	<0.03	ND	20	99	90	110	88	75	125
Nitrate (as N)	DIO0092-OCT23	mg/L	0.06	<0.06	0	20	100	90	110	102	75	125
Nitrite (as N)	DIO0093-OCT23	mg/L	0.03	<0.03	ND	20	99	90	110	92	75	125
Nitrate (as N)	DIO0093-OCT23	mg/L	0.06	<0.06	1	20	99	90	110	102	75	125
Nitrite (as N)	DIO0141-OCT23	mg/L	0.03	<0.03	ND	20	99	90	110	97	75	125

Biochemical Oxygen Demand

Method: SM 5210 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Re	F.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Biochemical Oxygen Demand (BOD5)	BOD0007-OCT23	mg/L	2	< 2	NV	30	101	70	130	NV	70	130

Carbon by SFA

Method: SM 5310 | Internal ref.: ME-CA-IENVISFA-LAK-AN-009

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Ref	
	Reference		E	Blank	RPD	AC	Spike		ry Limits	Spike	Recover	ry Limits
						(%)	Recovery	(*	%)	Recovery	(9	6)
						(78)	(%)	Low	High	(%)	Low	High
Dissolved Organic Carbon	SKA0042-OCT23	mg/L	1	<1	0	20	103	90	110	93	75	125

Chemical Oxygen Demand

Method: HACH 8000 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-009

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Re	f.
	Reference			Blank	RPD AC (%) F	Spike	Recove	ry Limits %)	Spike Recovery		ry Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Chemical Oxygen Demand	EWL0066-OCT23	mg/L	8	<8	ND	20	110	80	120	98	75	125
Chemical Oxygen Demand	EWL0076-OCT23	mg/L	8	<8	0	20	104	80	120	94	75	125
Chemical Oxygen Demand	EWL0077-OCT23	mg/L	8	<8	2	20	118	80	120	102	75	125

Conductivity

Method: SM 2510 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	:
	Reference	Э Э		Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	ry Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
Conductivity	EWL0130-OCT23	uS/cm	2	< 2	0	20	100	90	110	NA		

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-IENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover (۹	•	Spike Recovery		ery Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Silver (dissolved)	EMS0031-OCT23	mg/L	0.00005	<0.00005	ND	20	101	90	110	81	70	130
Aluminum (dissolved)	EMS0031-OCT23	mg/L	0.001	<0.001	4	20	100	90	110	92	70	130
Arsenic (dissolved)	EMS0031-OCT23	mg/L	0.0002	<0.0002	0	20	96	90	110	100	70	130
Barium (dissolved)	EMS0031-OCT23	mg/L	0.00008	<0.00008	1	20	99	90	110	98	70	130
Beryllium (dissolved)	EMS0031-OCT23	mg/L	0.000007	<0.000007	ND	20	95	90	110	93	70	130
Boron (dissolved)	EMS0031-OCT23	mg/L	0.002	<0.002	3	20	95	90	110	97	70	130
Bismuth (dissolved)	EMS0031-OCT23	mg/L	0.00001	<0.00001	ND	20	96	90	110	84	70	130
Calcium (dissolved)	EMS0031-OCT23	mg/L	0.01	<0.01	0	20	101	90	110	99	70	130
Cadmium (dissolved)	EMS0031-OCT23	mg/L	0.000003	<0.000003	0	20	100	90	110	105	70	130
Cobalt (dissolved)	EMS0031-OCT23	mg/L	0.000004	<0.000004	1	20	99	90	110	96	70	130
Chromium (dissolved)	EMS0031-OCT23	mg/L	0.00008	<0.00008	16	20	98	90	110	102	70	130
Copper (dissolved)	EMS0031-OCT23	mg/L	0.0002	<0.0002	3	20	100	90	110	84	70	130
Iron (dissolved)	EMS0031-OCT23	mg/L	0.007	<0.007	1	20	102	90	110	100	70	130
Potassium (dissolved)	EMS0031-OCT23	mg/L	0.009	<0.009	1	20	102	90	110	81	70	130
Magnesium (dissolved)	EMS0031-OCT23	mg/L	0.001	<0.001	1	20	100	90	110	96	70	130
Manganese (dissolved)	EMS0031-OCT23	mg/L	0.00001	<0.00001	1	20	100	90	110	102	70	130
Molybdenum (dissolved)	EMS0031-OCT23	mg/L	0.00004	<0.00004	9	20	100	90	110	93	70	130
Sodium (dissolved)	EMS0031-OCT23	mg/L	0.01	<0.01	1	20	99	90	110	97	70	130
Nickel (dissolved)	EMS0031-OCT23	mg/L	0.0001	<0.0001	7	20	101	90	110	93	70	130
Lead (dissolved)	EMS0031-OCT23	mg/L	0.00009	<0.00009	4	20	101	90	110	100	70	130

Metals in aqueous samples - ICP-MS (continued)

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LCS	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover (%	•	Spike Recovery		ery Limits %)
					:0.0009 ND	(70)	(%)	Low	High	(%)	Low	High
Antimony (dissolved)	EMS0031-OCT23	mg/L	0.0009	<0.0009	ND	20	110	90	110	123	70	130
Selenium (dissolved)	EMS0031-OCT23	mg/L	0.00004	<0.00004	13	20	95	90	110	101	70	130
Silicon (dissolved)	EMS0031-OCT23	mg/L	0.02	<0.02	1	20	101	90	110	NV	70	130
Tin (dissolved)	EMS0031-OCT23	mg/L	0.00006	<0.00006	ND	20	98	90	110	NV	70	130
Strontium (dissolved)	EMS0031-OCT23	mg/L	0.00008	<0.00008	1	20	100	90	110	97	70	130
Titanium (dissolved)	EMS0031-OCT23	mg/L	0.00007	<0.00005	19	20	97	90	110	NV	70	130
Thallium (dissolved)	EMS0031-OCT23	mg/L	0.000005	<0.000005	18	20	101	90	110	102	70	130
Uranium (dissolved)	EMS0031-OCT23	mg/L	0.000002	2e-006	0	20	101	90	110	96	70	130
Vanadium (dissolved)	EMS0031-OCT23	mg/L	0.00001	<0.00001	13	20	99	90	110	100	70	130
Zinc (dissolved)	EMS0031-OCT23	mg/L	0.002	<0.002	1	20	99	90	110	108	70	130

pН

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Ref	
	Reference				RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	(% Low	High
рН	EWL0130-OCT23	No unit	0.05	NA	0		101			NA		

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	latrix Spike / Re	i. 📄
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ry Limits %)
				(%)	Recovery (%)	Low	High	(%)	Low	High		
4AAP-Phenolics	SKA0046-OCT23	mg/L	0.002	<0.002	0	10	103	80	120	101	75	125

Phosphorus by SFA

Method: SM 4500-P J | Internal ref.: ME-CA-IENVISFA-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	latrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Phosphorus (total)	SKA5017-OCT23	mg/L	0.03	<0.03	8	10	99	90	110	114	75	125
Phosphorus (total)	SKA5030-OCT23	mg/L	0.03	<0.03	ND	10	98	90	110	84	75	125

Reactive Phosphorus by SFA

Method: SM 4500-P F | Internal ref.: ME-CA-IENVISFA-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Re	:
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Reactive Phosphorous (o-phosphate as P)	SKA0038-OCT23	mg/L	0.03	<0.03	ND	10	98	90	110	NV	75	125

Solids Analysis

Method: SM 2540C | Internal ref.: ME-CA-IENVIEWL-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		N	latrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	•
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Dissolved Solids	EWL0057-OCT23	mg/L	30	<30	2	20	99	80	120	NA		
Total Dissolved Solids	EWL0060-OCT23	mg/L	30	<30	0	20	103	80	120	NA		

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Suspended Solids	EWL0069-OCT23	mg/L	2	< 2	1	10	96	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen (N)	SKA0048-OCT23	mg/L	0.05	<0.05	ND	10	105	90	110	107	75	125
Total Kjeldahl Nitrogen (N)	SKA5023-OCT23	mg/L	0.05	<0.05	1	10	102	90	110	NV	75	125
Total Kjeldahl Nitrogen (N)	SKA5031-OCT23	mg/L	0.05	<0.05	6	10	101	90	110	94	75	125

Turbidity

Method: SM 2130 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	:
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Turbidity	EWL0098-OCT23	NTU	0.10	< 0.10	0	10	102	90	110	NA		

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
 - ↑ Reporting limit raised.
 - ↓ Reporting limit lowered.
 - NA The sample was not analysed for this analyte
 - ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

	23	F	Request for Laborato	ory Services	and CHA	IN OF C	USTOD	Y (Gen	eral)				
0	GD	SGS Environmental Services - Lakefi	eld: 185 Concession St., Lakefie	id, ON KOL 2HO P	hone: 705-652-	2000 Toll Fr	ee: 877-747	-7658 Fax:	705-652-636	5 Web: www.c	a.sgs.com	{4}	
		SGS Environmental Services - Londo				4500 Toll Fr	ree: 877-848	-8060 Fax:	519-672-036	1 Web: www.c	ca.sgs.com	{4}	-
		OCT 0 2 2023	Laboratory Ir	nformation Se	1	. m	+	ICA	20	the second		- 12 -	int.
	d Date (mm/dd/y)			102	LAB LIMS		CT -	150	200	4			_
eceive	d Time (After Hou	irs Only)::	Billing & Rer	forting Inform	Temperatu	ure Upon I	Receipt (°	C): 7	5,47		-		1.1
0	Company:	Pinchin	Dining & Igh	Jording Inform	auon	Quote #	t:		2023 54	4	a Reption for		
	Attention:	Alana Valle					d Parame			-		R	/
Invoice/Receipt to {3}:	1. Sec. 1.	662 Falconbridge Rd, Unit 3				Attache	o Parame	eter List:	_		YES	L.	NO
{3	Address:	Sudbury, Ontario							Turnarou	und Time			12
		P3A 4S4				Is *Rush	n Turnaro	und Tim	e Require	ed?	[YES	2
- 1	Email:	avalle@pinchin.com	1	1		Specify:							_
Project	Name/Number:	225335.007 Croft Landfill GW	P.O. #:			* Rush TA I	Requests Re	quire Lab A	pproval				
11-1-2		Clien	t Information/Report To			Carl Starts Co				Client Lab	#		70
Co	mpany Name:					Phone	Numbe	r:		705.507.	-		
c	ontact Name:				-	Fax Nu	umber:						
	Address:	1				E-mail:	:					-	-
	Copy to:			_				Ar		-		1	-
			Sample	e Information	The second se	The second	Ar				1.250-19	-1	125
						(plea		r the an	alysis re		elow a		ck c
		Sample Identifier	Date Sampled (mm/dd/yy		# of Bottles	Field Filtered	A se enter the ar which anal Lield DH Hd DH Lield DH			GW Package	-		
BH1			NI al a		9	L V	L.	Ľ.				158.1	
			9/28/2	3 4 - 7		1		-		X			-
H8			1	1	9	1				x			
H9					9					x			
H10					9					x	-		
H11					a		-					-	-
							-	-	-	X	-		-
H12	_				9				-	x		_	
H13	-				9					x			
8H14					9					x			
W DL	JP		V	V	9	V				x			
-				-							-	-	-
				-		-	-	-	-			_	-
				-		-		-			1		
	V												
		-		1									
						-	-						-
				-	-	-	-		-				-
				-	-						-		
							-				-		
	Sampled By {1}:	(Name) Alana Valle	(Signature)	100				Date:				(mm/c	dd/y
				MI			-	0.11	10	21.	23	-	
	nquished by {2):	(Name) [- [/] // [//] //	(Signature)	HV.				Date:	10	10 21	631	(mm/c	10/\

Revision #: 2.3 Date of Issue: 24 Jun. 2014

V V

> ij 2

10:30 18

CA15142-MAY23 R1

225335.007, Croft Landfill SW

Prepared for

Pinchin Ltd

First Page

CLIENT DETAILS	3	LABORATORY DETAIL	S
Client	Pinchin Ltd	Project Specialist	Jill Campbell, B.Sc.,GISAS
		Laboratory	SGS Canada Inc.
Address	662 Falconbridge Road, Unit 3, Sudbury	Address	185 Concession St., Lakefield ON, K0L 2H0
	Canada, P3A 4S4		
	Phone: 705-521-0560. Fax:		
Contact	Alana Valle	Telephone	2165
Telephone	705-521-0560	Facsimile	705-652-6365
Facsimile		Email	jill.campbell@sgs.com
Email	avalle@Pinchin.com	SGS Reference	CA15142-MAY23
Project	225335.007, Croft Landfill SW	Received	05/12/2023
Order Number		Approved	05/23/2023
Samples	Surface Water (4)	Report Number	CA15142-MAY23 R1
		Date Reported	05/23/2023

COMMENTS

Temperature of Sample upon Receipt: 3 degrees C Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: n/a

BOD spike REP low, accepted based on all other quality control

SIGNATORIES

Jill Campbell, B.Sc.,GISAS

Jill Cumpbell

TABLE OF CONTENTS

First Page	1-2
Index	3
Results	4-6
Exceedance Summary	7
QC Summary	8-16
Legend	17
Annexes	18

Arsenic (total)

FINAL REPORT

Client: Pinchin Ltd

Project: 225335.007, Croft Landfill SW

							Pro	oject: 225335.007, Croft Landfill SW
							Project Mana	ager: Alana Valle
							Samp	olers: Sarah Burke
IATRIX: WATER			Sample Number	6	7	8	9	
			Sample Name	SW1	SW2	SW3	SW DUP	
= PWQO_L / WATER / Table 2 - General - July 1999 PI	IBS 3303E		Sample Matrix	Surface Water	Surface Water	Surface Water	Surface Water	
			Sample Date	10/05/2023	10/05/2023	10/05/2023	10/05/2023	
Parameter	Units	RL	L1	Result	Result	Result	Result	
eneral Chemistry								
Biochemical Oxygen Demand (BOD5)	mg/L	2		< 4↑	< 4↑	< 4↑	< 4↑	
Prep BOD	Prep	no		45058	45058	45058	45058	
Total Suspended Solids	mg/L	2		16	9	5	7	
Alkalinity	mg/L as CaCO3	2		< 2	4	133	3	
Conductivity	uS/cm	2		502	18	386	17	
Total Dissolved Solids	mg/L	30		320	< 30	229	< 30	
Chemical Oxygen Demand	mg/L	8		24	27	42	30	
Colour	TCU	3		11	26	60	56	
Total Kjeldahl Nitrogen (N)	as N mg/L	0.05		0.67	0.34	2.23	0.34	
Ammonia+Ammonium (N)	as N mg/L	0.04		< 0.04	< 0.04	1.55	< 0.04	
Total Reactive Phosphorous (o-phosphate as P)	mg/L	0.03		< 0.03	< 0.03	< 0.03	< 0.03	
Dissolved Organic Carbon	mg/L	1		3	8	13	8	
letals and Inorganics								
Sulphate	mg/L	2		< 2	< 2	26	< 2	
Nitrite (as N)	as N mg/L	0.03		< 0.03	< 0.03	< 0.03	< 0.03	
Nitrate (as N)	as N mg/L	0.06		< 0.06	0.35	0.42	< 0.06	
Hardness	mg/L as CaCO3	0.05		151	5.56	140	5.57	
Silver (total)	mg/L	0.00005	0.0001	< 0.00005	< 0.00005	< 0.00005	< 0.00005	
Aluminum (0.2µm)	mg/L	0.001	0.015	0.327	0.139	0.046	0.153	

0.0002

0.0005

0.0002

0.0003

0.075

0.005

mg/L

0.0002

L1 = PWQO_L / WATER / - - Table 2 - General - July 1999 PIBS 3303E

MATRIX: WATER

FINAL REPORT

Client: Pinchin Ltd

Project: 225335.007, Croft Landfill SW

							ger: Alana Valle ers: Sarah Burke
		Sample Numbe	ər 6	7	8	9	
		Sample Nam		SW2	SW3	SW DUP	
		Sample Matr	x Surface Water	Surface Water	Surface Water	Surface Water	
		Sample Dat	e 10/05/2023	10/05/2023	10/05/2023	10/05/2023	
Units	RL	L1	Result	Result	Result	Result	
mg/L	0.00008		0.0873	0.00852	0.0324	0.00856	
mg/L	0.000007	0.011	0.000060	0.000029	0.000017	0.000032	
		1.1					
mg/L	0.00001		< 0.00001	< 0.00001	< 0.00001	< 0.00001	
mg/L	0.002	0.2	0.018	0.016	0.326	0.018	
mg/L	0.01		41.8	1.62	48.0	1.63	

Parameter	Units RL	L1	Result	Result	Result	Result
Aetals and Inorganics (continued)						
Barium (total)	mg/L 0.00008		0.0873	0.00852	0.0324	0.00856
Beryllium (total)	mg/L 0.000007	0.011	0.000060	0.000029	0.000017	0.000032
		1.1				
Bismuth (total)	mg/L 0.00001		< 0.00001	< 0.00001	< 0.00001	< 0.00001
Boron (total)	mg/L 0.002	0.2	0.018	0.016	0.326	0.018
Calcium (total)	mg/L 0.01		41.8	1.62	48.0	1.63
Cadmium (total)	mg/L 0.000003	0.0001	0.000135	0.000025	0.000036	0.000031
		0.0005	ļ			
Cobalt (total)	mg/L 0.000004	0.0009	0.00689	0.000326	0.000708	0.000349
Chromium (total)	mg/L 0.00008	0.1	0.00040	0.00037	0.00083	0.00040
Copper (total)	mg/L 0.0002	0.001	0.0008	0.0009	0.0030	0.0011
		0.005				
Iron (total)	mg/L 0.007	0.3	5.94	0.700	0.440	0.718
Potassium (total)	mg/L 0.009		3.34	0.343	9.79	0.347
Magnesium (total)	mg/L 0.001		11.4	0.372	4.84	0.365
Manganese (total)	mg/L 0.00001		0.662	0.0518	0.293	0.0532
Molybdenum (total)	mg/L 0.00004	0.04	< 0.00004	< 0.00004	0.00065	0.00042
Sodium (total)	mg/L 0.01		18.9	1.10	16.8	1.03
Nickel (total)	mg/L 0.0001	0.025	0.0032	0.0007	0.0011	0.0007
Lead (total)	mg/L 0.00009	0.005	0.00010	0.00023	0.00012	0.00023
		0.025				
Phosphorus (total)	mg/L 0.003	0.01	0.039	0.032	0.034	0.036
Antimony (total)	mg/L 0.0009	0.02	< 0.0009	< 0.0009	< 0.0009	< 0.0009

Client: Pinchin Ltd

Project: 225335.007, Croft Landfill SW

Project Manager: Alana Valle

Samplers: Sarah Burke	
-----------------------	--

MATRIX: WATER				Sample Number	6	7	8	9
WATKIA. WATER				Sample Name	SW1	SW2	SW3	SW DUP
				•				
L1 = PWQO_L / WATER / Table 2 - General - July 1999 PIBS 3303E				Sample Matrix		Surface Water	Surface Water	Surface Water
				Sample Date	10/05/2023	10/05/2023	10/05/2023	10/05/2023
Parameter	Units	RL	L1		Result	Result	Result	Result
Metals and Inorganics (continued)								
Selenium (total)	mg/L	0.00004	0.1		< 0.00004	< 0.00004	< 0.00004	< 0.00004
Silicon (total)	mg/L	0.02			3.18	1.09	2.04	1.10
Tin (total)	mg/L	0.00006			0.00008	< 0.00006	0.00012	0.00010
Strontium (total)	mg/L	0.00008			0.485	0.0112	0.156	0.0111
Titanium (total)	mg/L	0.00005			0.00521	0.00703	0.00931	0.00788
Uranium (total)	mg/L	0.000002	0.005		0.000020	0.000050	0.000400	0.000054
Vanadium (total)	mg/L	0.00001	0.006		0.00036	0.00049	0.00061	0.00049
Zinc (total)	mg/L	0.002	0.02		0.099	0.005	0.003	0.006
Other (ORP)								
рН	No unit	0.05	0.1		4.45	6.46	7.99	6.30
			8.6					
Chloride	mg/L	1			190	< 1	36	< 1
Phenols								
4AAP-Phenolics	mg/L	0.001	0.001		0.003	< 0.001	0.002	< 0.001

EXCEEDANCE SUMMARY

				PWQO_L / WATER
				/ Table 2 -
				General - July 1999
				PIBS 3303E
Parameter	Method	Units	Result	L1
1				
Aluminum (dissolved)	SM 3030/EPA 200.8	mg/L	0.327	0.015
Cobalt	SM 3030/EPA 200.8	mg/L	0.00689	0.0009
Iron	SM 3030/EPA 200.8	mg/L	5.94	0.3
Phosphorus	SM 3030/EPA 200.8	mg/L	0.039	0.01
Zinc	SM 3030/EPA 200.8	mg/L	0.099	0.02
pН	SM 4500	No unit	4.45	0.1
4AAP-Phenolics	SM 5530B-D	mg/L	0.003	0.001
2				_
Aluminum (dissolved)	SM 3030/EPA 200.8	mg/L	0.139	0.015
Iron	SM 3030/EPA 200.8	mg/L	0.700	0.3
Phosphorus	SM 3030/EPA 200.8	mg/L	0.032	0.01
рН	SM 4500	No unit	6.46	0.1
3				
Boron	SM 3030/EPA 200.8	mg/L	0.326	0.2
Iron	SM 3030/EPA 200.8	mg/L	0.440	0.3
Phosphorus	SM 3030/EPA 200.8	mg/L	0.034	0.01
4AAP-Phenolics	SM 5530B-D	mg/L	0.002	0.001
DUP				_
Aluminum (dissolved)	SM 3030/EPA 200.8	mg/L	0.153	0.015
Copper	SM 3030/EPA 200.8	mg/L	0.0011	0.001
Iron	SM 3030/EPA 200.8	mg/L	0.718	0.3
Phosphorus	SM 3030/EPA 200.8	mg/L	0.036	0.01

Alkalinity

Method: SM 2320 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	LCS/Spike Blank		M	atrix Spike / R	ef.
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		very Limits (%)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Alkalinity	EWL0344-MAY23	mg/L as CaCO3	2	< 2	0	20	100	80	120	NA		

Ammonia by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		м	atrix Spike / Rei	F.
	Reference			Blank	RPD AC (%)		Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Ammonia+Ammonium (N)	SKA0158-MAY23	mg/L	0.04	<0.04	0	10	101	90	110	97	75	125

Anions by discrete analyzer

Method: US EPA 325.2 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Re	xf.
	Reference			Blank	RPD	AC	Spike	Recovei (۹	•	Spike Recovery		ery Limits (%)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Chloride	DIO5081-MAY23	mg/L	1	<1	7	20	108	80	120	112	75	125
Sulphate	DIO5081-MAY23	mg/L	2	<2	ND	20	106	80	120	109	75	125

Anions by IC

Method: EPA300/MA300-Ions1.3 | Internal ref.: ME-CA-[ENV]IC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dup	olicate	icate LCS/Spike Blank				Matrix Spike / Ref.			
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)			
						(%)	Recovery (%)	Low	High	(%)	Low	High		
Nitrite (as N)	DIO0398-MAY23	mg/L	0.03	<0.03	ND	20	99	90	110	103	75	125		
Nitrate (as N)	DIO0398-MAY23	mg/L	0.06	<0.06	ND	20	103	90	110	106	75	125		
Nitrite (as N)	DIO0399-MAY23	mg/L	0.03	<0.03	ND	20	99	90	110	103	75	125		
Nitrate (as N)	DIO0399-MAY23	mg/L	0.06	<0.06	ND	20	103	90	110	105	75	125		

Biochemical Oxygen Demand

Method: SM 5210 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Dup	Duplicate LCS	S/Spike Blank		м	atrix Spike / Re	F.	
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Biochemical Oxygen Demand (BOD5)	BOD0028-MAY23	mg/L	2	< 2	4	30	108	70	130	68	70	130

Carbon by SFA

Method: SM 5310 | Internal ref.: ME-CA-IENVISFA-LAK-AN-009

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	latrix Spike / Re	ī.
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ory Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Dissolved Organic Carbon	SKA0157-MAY23	mg/L	1	<1	3	20	107	90	110	105	75	125
Dissolved Organic Carbon	SKA0168-MAY23	mg/L	1	<1	ND	20	97	90	110	82	75	125

Chemical Oxygen Demand

Method: HACH 8000 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-009

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		N	latrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	y Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
Chemical Oxygen Demand	EWL0338-MAY23	mg/L	8	<8	0	20	104	80	120	102	75	125

Colour

Method: SM 2120 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recover	-	Spike Recovery		ery Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High	
Colour	EWL0369-MAY23	TCU	3	< 3	ND	10	105	80	120	NA			
Colour	EWL0406-MAY23	TCU	3	< 3	0	10	110	80	120	NA			

Conductivity

Method: SM 2510 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	latrix Spike / Ref	F.
	Reference			Blank	RPD	AC	Spike	. (%		Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Conductivity	EWL0344-MAY23	uS/cm	2	< 2	0	20	99	90	110	NA		

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-IENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method Blank	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.		
	Reference				RPD	AC (%)	Spike Recovery (%)	Recovery Limits (%)		Spike Recovery	Recovery Limits	
								Low	High	(%)	Low	High
Silver (total)	EMS0111-MAY23	mg/L	0.00005	<0.00005	ND	20	101	90	110	94	70	130
Aluminum (0.2µm)	EMS0111-MAY23	mg/L	0.001	<0.001	5	20	99	90	110	87	70	130
Arsenic (total)	EMS0111-MAY23	mg/L	0.0002	<0.0002	18	20	96	90	110	103	70	130
Barium (total)	EMS0111-MAY23	mg/L	0.00008	<0.00008	2	20	96	90	110	104	70	130
Beryllium (total)	EMS0111-MAY23	mg/L	0.000007	<0.000007	ND	20	100	90	110	98	70	130
Boron (total)	EMS0111-MAY23	mg/L	0.002	<0.002	4	20	110	90	110	100	70	130
Bismuth (total)	EMS0111-MAY23	mg/L	0.00001	<0.00001	ND	20	96	90	110	92	70	130
Calcium (total)	EMS0111-MAY23	mg/L	0.01	<0.01	1	20	100	90	110	110	70	130
Cadmium (total)	EMS0111-MAY23	mg/L	0.000003	<0.000003	11	20	98	90	110	98	70	130
Cobalt (total)	EMS0111-MAY23	mg/L	0.000004	<0.000004	8	20	96	90	110	100	70	130
Chromium (total)	EMS0111-MAY23	mg/L	0.00008	<0.00008	19	20	96	90	110	105	70	130
Copper (total)	EMS0111-MAY23	mg/L	0.0002	<0.0002	4	20	97	90	110	75	70	130
Iron (total)	EMS0111-MAY23	mg/L	0.007	<0.007	ND	20	102	90	110	125	70	130
Potassium (total)	EMS0111-MAY23	mg/L	0.009	<0.009	1	20	102	90	110	113	70	130
Magnesium (total)	EMS0111-MAY23	mg/L	0.001	<0.001	0	20	102	90	110	119	70	130
Manganese (total)	EMS0111-MAY23	mg/L	0.00001	<0.00001	3	20	101	90	110	106	70	130
Molybdenum (total)	EMS0111-MAY23	mg/L	0.00004	<0.00004	4	20	104	90	110	109	70	130
Sodium (total)	EMS0111-MAY23	mg/L	0.01	<0.01	2	20	98	90	110	94	70	130
Nickel (total)	EMS0111-MAY23	mg/L	0.0001	<0.0001	7	20	98	90	110	96	70	130
Lead (total)	EMS0111-MAY23	mg/L	0.00009	<0.00009	2	20	100	90	110	100	70	130

Metals in aqueous samples - ICP-MS (continued)

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	RPD AC (%)	Spike Recovery	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(70)	(%)	Low	High	(%)	Low	High
Phosphorus (total)	EMS0111-MAY23	mg/L	0.003	<0.003	ND	20	100	90	110	NV	70	130
Antimony (total)	EMS0111-MAY23	mg/L	0.0009	<0.0009	ND	20	95	90	110	94	70	130
Selenium (total)	EMS0111-MAY23	mg/L	0.00004	<0.00004	5	20	104	90	110	98	70	130
Silicon (total)	EMS0111-MAY23	mg/L	0.02	<0.02	1	20	97	90	110	NV	70	130
Tin (total)	EMS0111-MAY23	mg/L	0.00006	<0.00006	5	20	99	90	110	NV	70	130
Strontium (total)	EMS0111-MAY23	mg/L	0.00008	<0.00008	1	20	96	90	110	102	70	130
Titanium (total)	EMS0111-MAY23	mg/L	0.00005	<0.00005	13	20	103	90	110	NV	70	130
Uranium (total)	EMS0111-MAY23	mg/L	0.000002	2e-006	11	20	99	90	110	98	70	130
Vanadium (total)	EMS0111-MAY23	mg/L	0.00001	<0.00001	7	20	97	90	110	101	70	130
Zinc (total)	EMS0111-MAY23	mg/L	0.002	<0.002	6	20	102	90	110	103	70	130

pН

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0344-MAY23	No unit	0.05	NA	0		100			NA		

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	Units RL	RL Method Blank	Dup	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference				RPD	AC (%)	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
							Recovery (%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0145-MAY23	mg/L	0.001	<0.001	ND	10	98	80	120	96	75	125

Reactive Phosphorus by SFA

Method: SM 4500-P F | Internal ref.: ME-CA-IENVISFA-LAK-AN-004

Parameter	QC batch	Units	s RL	RL Method	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recover	•	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Reactive Phosphorous (o-phosphate as P)	SKA0170-MAY23	mg/L	0.03	<0.03	ND	10	98	90	110	77	75	125

Solids Analysis

Method: SM 2540C | Internal ref.: ME-CA-IENVIEWL-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	Duplicate	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Dissolved Solids	EWL0413-MAY23	mg/L	30	<30	1	20	99	80	120	NA		

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-004

Parameter	QC batch Reference	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Re	f.
				Blank	RPD	AC (%)	Spike Recovery (%)	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
								Low	High	(%)	Low	High
Total Suspended Solids	EWL0415-MAY23	mg/L	2	< 2	0	10	99	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	Units RL		Dup	Duplicate		S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike		ery Limits	Spike	Recove	ry Limits
						(%)	Recovery	(%)		Recovery	(9	%)
							(%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen (N)	SKA0156-MAY23	mg/L	0.05	<0.05	ND	10	105	90	110	121	75	125

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- ↑ Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

22		Rec	quest for Laborator	y Services	and CHA	IN OF C	USTOD	Y (Gene	ral)						
99															
	SGS Environme	ntal Services - London: 65				4500 Toll Fr	ee: 877-848	-8060 Fax: 5	519-672-036	1 Web: www	.ca.sgs.com	{4}			
Date (mm/dd/vy	MAY	1 2 2023		Kn		#:	Au	514	2-1	1ay	23				
and the state of the						ire Upon F	Receipt (°	C):	230	1'			-		
Company	Pinchin		Billing & Repo	orting Inform	ation	Quote #		and the second	2023 544		1000	19 24 Z	1912		
Attention:											-	-			
	662 Falconbridge Rd, Unit	3				Attached	a Parame	eter List:				Ц	NO		
Address:									1944 104-413				-		
Emails							Turnaro	und Tim	e Require	d?		YES	Å		
the statements of															
Name/Number:	225335.07-Croft Landfill SW		P.O. #:			* Rush TA F	Requests Re	quire Lab Ap	proval						
		Client In	formation/Report To:							Client La	ab #:				
pany Name:						Phone	Numbe	r:		705.507	.9479		_		
ntact Name:						Fax Nu	mber:								
Addrose						E-mail							-		
						-man.				-					
Copy to:											and the second second				
			Sample	Information	1.50										
						(plea		r the an	alysis re	quired	below a		ck of		
	Sample Identifier			Time	# of Bottles	p	-								
			(mm/dd/yy)			ield Filtere	ield Temp	ield pH		W Packag					
-			05 14 123	12 3	10		<u> </u>	ш	-	12-201		1			
			05/10/23	12-0	10	-	-				-		-		
					10	-	-		-						
					10	-			-	-		-	-		
Р			V	V	10	N			1	x		-			
										-					
				-		-	-	-			-	-	-		
				-	-	-	-	-	-	-			-		
				-	-		-	-		-		-	-		
						1									
ampled By (4)	(Name) &	2	(Signature)	Kaund	16	11	-	Date	05	111	23	(mm	/dd/vv		
anipied By {1}	Darah ,	DURKE	(Signature)	Juch	Furl	10.		Date:	05	1) 1	23		/dd/yy		
quisned by (2)	(Name) Jornh	MUCKP.	(Signature),	SCAPPA	VY4	-les		Date:	20			s consider			
	Time (After Hou Company: Attention: Address: Email: Name/Number: Dontact Name: Address: Copy to: Copy to: P	SGS Environme Date (mm/dd/yyyy): MAY Time (After Hours Only):	SGS Environmental Services - London: 64 Date (mm/dd/yyyy): Time (After Hours Only): Company: Pinchin Attention: Alana Valle 662 Falconbridge Rd, Unit 3 Address: Sudbury, Ontario P3A 4S4 Email: avalle@pinchin.com Name/Number: 225335.07-Croft Landfill SW Client In npany Name: Address: Copy to: Sample Identifier	Billing & Repr Company. Pinchin Attention: Alana Valle 662 Falconbridge Rd, Unit 3 Address: Sudbury. Ontario P3A 454 Email: availe@pinchin.com Name!Number: 225335.07-Croft Landfill SW P.O. #: Client Information/Report To: Topany Name: Sample Identifier Date Sample Identifier Date Sample Identifier S	BS Environmental Services - London: 697 Consortium Court, London, ON, NE 288 PV Laboratory Information Sec Laboratory Information Sec Date (mm/dd/yyy): Ime (After Hours Only): Company, Pinchin Attention: Alana Valle 662 Fastconbridge Rd, Unit 3 Address Sudbury, Ontario P3A 454 Email: availe@pinchin.com NameNumber: 22535.07-Croft Landfill SW P.O. #: Client Information/Report To: pany Name: Address: Copy to: Sample Identifier Sample Identifie	Side Environmental Services - Landon: 557 Consortium Court, Landon, ON, ME 238 Phone: 518-672. Laboratory Information Section Date (mm/ddyyy): MAY 12 2023 UMAY 12 2023 Time (After Hours Only): Company Pinchin Attention: Alara Valle 662 Palconbridge Rd, Unit 3 Address 2040bury, Ontalo P3A 454 Email: availe@pinchin.com NameNumber: 225335 07-Croft Landfil SW P.O. #: Client Information/Report To: Umany Name: Date Information Sample Identifier Sample Information Sample Information P3A 454 Client Information/Report To: Umany Name: Date Information Sample Identifier Sam	Sas Enviolmental Service - London: 637 Consortum Court. London, ON, NEE 238 Prove ST4-6472-650 Tot Fr Laboratory Information Section Date (mm/dd/yyy): MAY 1 2 2023 LB LIMS #: Temperature Upon I Company: Pinchin Company: Pinchin Company: Pinchin Company: Pinchin Sampled geinchin.com P3A 454 Email: avale@geinchin.com P3A 454 Email: avale@geinchin.com P4A 454 Client Information/Report To: Phone Phone Phone Phone Sample Identifier Sample Identifier Sample Identifier Phone C5/16/123 12 - 3 10 N P V V V 10 N P V V V 0 C5/16/123 12 - 3 10 N P C5/16/123 12 - 3 10 N C5/16/123 12 - 3 10 N C5/16/123 12 - 3 10 N P C5/16/123 12 - 3 10 N C5/16/123 12 - 3	Bits Enveronmental Bervices - Ludoit: 637 Consortum Court, Londin. On, NRE 288 Prevers 19-672-4800 Tole Prev. 877-484 Laboratory Information Section Laboratory Information Section Company: Pinchin Company: Pinchin Attached Paramotion Outle #: Attached Paramotion Outle #: Attached Paramotion Outle #: Rush Turnare Sudbury, Ontario Pinchin Attached Paramotion Outle #: Rush Turnare Sudbury, Ontario Pinchin Attached Paramotion Outlet #: Rush Turnare Sudbury, Ontario Phone Number Sample Information/Report To: Phone Number: Sample Identifier Sample Information Sample Information Objective Sampled Bottles Objective Sampled Information Sampled Information Sample Identifier Sampled Information Objective Sampled Information Objective Sampled Information	Soa Euronnented Berves 1912 Coastafine Cont. Latence, ON, ME 289 Prace 519472-440 Tal Free 67-244-000 Far (2) Laboratory information Section Company: Pinchin Colspan="2">Colspa: Colspan: Colspan: Colspan="2">Colspan="2">Colspan="2"Colspan="2"	Sold Enverse Linder: 627 Consolution Cons. Labor 100 ME 288 Meet 1967: 2000 Taf Price 273.444489 Price 394.6404 Price 394	565 Extramental Barries Curt Lador: 0X M2 28 Proce 314 274 2017 Nat: Not Street 74 444 800 Fax 514 274 2017 Nat: Nat: Nat: Nat: Nat: Nat: Nat: Nat:	Observements barves - Ladox bit 27 data 2007 bit 17 data 2007 bit 1987 2001 that were a data or Laboratory information Section Laboratory information Section Company Pinchin Courter Upon Recept (C): 2.34 Courter Upon Recept (C): 10: 2016 Courter Upon R	Date immediatywy: MAY 12 2023 Laboratory information Section Date immediatywy: MAY 12 2023 Laboratory information Section Company Proche Company Proche Date immediatywy: MAY 12 2023 Laboratory information Section Company Proche Company Proche Billing & Reporting information Goode #: 2023 644 Attached Parameter List: 2023 644 Company Proche Goode #: 2023 644 Attached Parameter List: Turnazound Time Company Fageora Attached Parameter List: Turnazound Time Polone Number: 705 507 3479 Data Colspan="2">Attached Parameter List: Totacher List: Totacher List: Turnazound Time Sample Identifier Data Sample Sample Identitinformation <th colspan="2" sample<="" td=""></th>		

CA15146-MAY23 R

225335.007, Croft GW

Prepared for

Pinchin Ltd

First Page

CLIENT DETAILS		LABORATORY DETAILS	
Client	Pinchin Ltd	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	662 Falconbridge Road, Unit 3, Sudbury	Address	185 Concession St., Lakefield ON, K0L 2H0
	Canada, P3A 4S4		
	Phone: 705-521-0560. Fax:		
Contact	Alana Valle	Telephone	705-652-2143
Telephone	705-521-0560	Facsimile	705-652-6365
Facsimile		Email	brad.moore@sgs.com
Email	avalle@Pinchin.com	SGS Reference	CA15146-MAY23
Project	225335.007, Croft GW	Received	05/12/2023
Order Number		Approved	06/06/2023
Samples	Ground Water (9)	Report Number	CA15146-MAY23 R
		Date Reported	06/06/2023

COMMENTS

Temperature of Sample upon Receipt: 3 degrees C Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: n/a

BOD spk rep low, results accepted based on other qc

SIGNATORIES

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-9
Exceedance Summary	10-11
QC Summary	12-21
Legend	
Annexes	23

Client: Pinchin Ltd

Project: 225335.007, Croft GW

Project Manager: Alana Valle

e

ATRIX: WATER				Sample Number	7	8	9	10	11	12	13	14
				Sample Name	BH1	BH8	BH9	BH10	BH11	BH12	BH13	BH14
= ODWS_AO_OG / WATER / Table 4 - Drinking Water	- Reg 0.169_03			Sample Matrix	Ground Water							
= ODWS_MAC / WATER / Table 1,2 and 3 - Drinking W	/ater - Reg 0.169_03			Sample Date	10/05/2023	10/05/2023	10/05/2023	10/05/2023	10/05/2023	10/05/2023	10/05/2023	10/05/2023
Parameter	Units	RL	L1	L2	Result							
cid Rock Drainage												
pH Check <2	pH	0.05			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
eneral Chemistry												
Biochemical Oxygen Demand (BOD5)	mg/L	2			< 4↑	< 4↑	< 4↑	< 4↑	< 4↑	< 4↑	< 4↑	< 4↑
Prep BOD	Prep	no			45058	45058	45058	45058	45058	45058	45058	45058
Total Suspended Solids	mg/L	2			88	126	89	204	28	717	58	545
Alkalinity	mg/L as CaCO3	2	500		66	8	165	341	75	51	22	80
Conductivity	uS/cm	2			161	31	474	1790	345	136	59	389
Total Dissolved Solids	mg/L	30	500		143	37	314	991	226	91	54	260
Chemical Oxygen Demand	mg/L	8			49	9	64	42	55	< 8	9	< 8
Turbidity	NTU	0.10	5	1	26	150	210	25	40	223	110	200
Total Kjeldahl Nitrogen (N)	as N mg/L	0.05			0.63	0.16	3.59	11.2	3.84	0.18	0.22	0.19
Ammonia+Ammonium (N)	as N mg/L	0.04			0.13	< 0.04	2.44	10.8	2.98	0.04	< 0.04	0.07
Total Reactive Phosphorous (o-phosphate as P)	mg/L	0.03			< 0.03	0.04	< 0.03	< 0.03	0.04	< 0.03	< 0.03	< 0.03
Dissolved Organic Carbon	mg/L	1	5		20	4	19	17	17	3	4	3

Client: Pinchin Ltd

Project: 225335.007, Croft GW

Project Manager: Alana Valle

Samplers:	Sarah Burke

ATRIX: WATER			Sample Number	7	8	9	10	11	12	13	14
			Sample Name	BH1	BH8	BH9	BH10	BH11	BH12	BH13	BH14
= ODWS_AO_OG / WATER / Table 4 - Drink			Sample Matrix	Ground Water 10/05/2023	Ground Water 10/05/2023	Ground Water 10/05/2023	Ground Water 10/05/2023				
= ODWS_MAC / WATER / Table 1,2 and 3 -		RL	Sample Date								
Parameter etals and Inorganics	Units	RL		Result	Result	Result	Result	Result	Result	Result	Result
Phosphorus (total)	mg/L	0.03		0.07	0.14	0.04	0.05	0.29	0.27	0.28	0.61
Sulphate	mg/L	2	500	6	6	37	27	41	14	4	25
Nitrite (as N)	as N mg/L	0.03	1	< 0.03	< 0.03	< 0.03	< 0.3↑	< 0.03	< 0.03	< 0.03	< 0.03
Nitrate (as N)	as N mg/L	0.06	10	< 0.06	< 0.06	< 0.06	0.82	0.27	0.21	< 0.06	< 0.06
Hardness (dissolved)	mg/L as CaCO3	0.05	100	55.2	7.6	162	504	55.4	54.1	24.8	157
Silver (dissolved)	mg/L	0.00005		< 0.00005	< 0.00005	< 0.00005	0.00005	< 0.00005	< 0.00005	0.00011	< 0.00005
Aluminum (dissolved)	mg/L	0.001		0.345	0.126	0.169	0.029	0.298	0.049	0.128	0.021
Arsenic (dissolved)	mg/L	0.0002	0.01	0.0014	0.0008	0.0011	0.0006	0.0004	0.0003	0.0003	0.0003
Barium (dissolved)	mg/L	0.00008	1	0.0561	0.00921	0.0724	0.226	0.0305	0.0365	0.0199	0.0731
Beryllium (dissolved)	mg/L	0.000007		0.000083	0.000025	0.000034	0.000024	0.000046	0.000048	0.000072	0.000052
Bismuth (dissolved)	mg/L	0.00001		0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Boron (dissolved)	mg/L	0.002	5	0.044	0.004	0.547	1.01	0.516	0.068	0.016	0.068
Calcium (dissolved)	mg/L	0.01		16.0	1.98	52.6	158	16.8	18.1	8.32	49.2
Cadmium (dissolved)	mg/L	0.000003	0.005	0.000028	0.000034	0.000050	0.000072	0.000041	0.000025	0.000078	0.000009
Cobalt (dissolved)	mg/L	0.000004		0.0119	0.000423	0.0118	0.00282	0.00173	0.000097	0.000140	0.000515
Chromium (dissolved)	mg/L	0.00008	0.05	0.00142	0.00045	0.00184	0.00123	0.00134	0.00025	0.00044	0.00025
Copper (dissolved)	mg/L	0.0002	1	0.0022	0.0113	0.0017	0.0124	0.0048	0.0010	0.0077	0.0003
Iron (dissolved)	mg/L	0.007	0.3	7.99	0.072	24.9	0.037	0.330	0.609	0.146	3.46
Potassium (dissolved)	mg/L	0.009		3.82	0.545	10.3	48.4	13.6	1.03	0.575	2.79
Magnesium (dissolved)	mg/L	0.001		3.69	0.659	7.49	26.7	3.28	2.13	0.981	8.25
Manganese (dissolved)	mg/L	0.00001	0.05	1.59	0.00485	3.34	2.36	0.471	0.281	0.0621	0.953
Molybdenum (dissolved)	mg/L	0.00004		0.00039	0.00039	0.00127	0.00175	0.00086	0.00080	0.00008	0.00028

FINAL REPORT

Client: Pinchin Ltd

Project: 225335.007, Croft GW

								Jobi. 220000.001, (
							Project Mana	ager: Alana Valle						
							Samplers: Sarah Burke							
		:	Sample Number	7	8	9	10	11	12	13	14			
			Sample Name	BH1	BH8	BH9	BH10	BH11	BH12	BH13	BH14			
169_03			Sample Matrix	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water			
eg O.169_03			Sample Date	10/05/2023	10/05/2023	10/05/2023	10/05/2023	10/05/2023	10/05/2023	10/05/2023	10/05/2023			
Units	RL	L1	L2	Result	Result	Result	Result	Result	Result	Result	Result			
mg/L	0.01	200	20	7.11	2.96	25.0	186	33.3	4.26	1.67	9.47			
mg/L	0.02			4.08	2.71	3.18	3.55	1.30	4.45	2.33	9.48			
mg/L	0.0001			0.0013	0.0020	0.0023	0.0029	0.0018	0.0002	0.0005	0.0002			
mg/L	0.00009		0.01	0.00025	0.00011	0.00011	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009			
mg/L	0.0009		0.006	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009			
mg/L	0.00004		0.05	0.00038	0.00010	0.00034	0.00029	0.00047	0.00014	0.00015	0.00008			
mg/L	0.00006			0.00011	0.00010	0.00019	0.00033	0.00013	0.00012	0.00008	0.00007			
mg/L	0.00008			0.0835	0.0104	0.197	0.753	0.0534	0.0775	0.0196	0.235			
mg/L	0.000005			0.000010	0.000008	0.000019	0.000081	0.000051	< 0.000005	0.000011	< 0.000005			
mg/L	0.00005			0.0216	0.00350	0.00309	0.00097	0.00469	0.00079	0.00194	0.00126			
mg/L	0.000002		0.02	0.000861	0.000252	0.000615	0.00551	0.000588	0.000170	0.00279	0.000428			
mg/L	0.00001			0.00425	0.00026	0.00369	0.00040	0.00047	0.00030	0.00044	0.00035			
mg/L	0.002	5		< 0.002	0.010	0.005	0.005	< 0.002	< 0.002	0.006	< 0.002			
	90.169_03 Units Mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	ng/L 0.01 mg/L 0.01 mg/L 0.02 mg/L 0.0001 mg/L 0.0009 mg/L 0.0009 mg/L 0.00004 mg/L 0.00004 mg/L 0.00005 mg/L 0.00005 mg/L 0.00002 mg/L 0.00002	Iteg 0.169_03 RL L1 mg/L 0.01 200 mg/L 0.02 200 mg/L 0.0001 200 mg/L 0.0009 200 mg/L 0.0009 200 mg/L 0.00004 200 mg/L 0.00004 200 mg/L 0.00006 200 mg/L 0.00008 200 mg/L 0.00005 200 mg/L 0.00005 200 mg/L 0.00002 200 mg/L 0.00005 200 mg/L 0.00001 200	Interpretation Sample Matrix ag 0.169_03 Sample Date Duits RL L1 L2 mg/L 0.01 200 20 mg/L 0.02 20 20 mg/L 0.001 200 20 mg/L 0.0009 0.01 200 mg/L 0.00006 200005 200005 mg/L 0.00005 200002 20002 mg/L 0.00005 20002 2002 mg/L 0.00001 20002 2002	Sample Name BH1 169_03 Sample Matrix Ground Water 10/05/2023 10/05/2023 Units RL L1 L2 Result mg/L 0.01 200 20 7.11 mg/L 0.02 4.08 10.0013 mg/L 0.0009 0.01 0.00025 mg/L 0.0009 0.01 0.00025 mg/L 0.0009 0.01 0.00025 mg/L 0.0009 0.016 < 0.0009	Sample Name BH1 BH8 169_03 Sample Matrix Ground Water Ground Water 10/05/2023 10/05/2023 10/05/2023 Units RL L1 L2 Result Result mg/L 0.01 200 20 7.11 2.96 mg/L 0.02 4.08 2.71 mg/L 0.001 0.0013 0.0020 mg/L 0.0009 0.01 0.0013 0.0020 mg/L 0.0009 0.01 0.00025 0.00011 mg/L 0.0009 0.01 0.00025 0.00011 mg/L 0.0009 0.01 0.00010 0.00010 mg/L 0.00004 0.05 0.00038 0.00010 mg/L 0.00005 0.021 0.00010 0.00008 mg/L 0.00005 0.02 0.0216 0.000252 mg/L 0.00001 0.000252 0.00026 0.0026	Sample Name BH1 BH8 BH9 168_03 Sample Matrix Ground Water Ground Water Ground Water Ground Water 10/05/2023 1	Sample Number 7 8 9 10 Nee_0.3 Sample Number BH1 BH8 BH9 BH10 sg.0160.03 Sample Matrix Ground Water Motos/2023 10/05/203 10/05/203 10/05/203 10/05/203 10/05/203 10/05/203 10/05/203 10/05/203 10/05/203 10/05/203 10/05/203 10/05/203 1	Sample Number 7 8 9 10 11 Sample Name eg 0.169_03 BH1 BH8 BH9 BH10 BH11 Sample Matrix eg 0.169_03 Sample Matrix Sample Date Ground Water Molo5/2023 10/05	Sample Number 7 8 9 10 11 12 Sample Number BH1 BH8 BH9 BH10 BH11 BH21 sample Mathing Ground Water Ground Water <td>Sample Number 7 8 9 10 11 12 13 Sample Number BH1 BH8 BH9 BH10 BH11 BH12 BH13 1000 00 Sample Matrix Ground Water Ground Water</td>	Sample Number 7 8 9 10 11 12 13 Sample Number BH1 BH8 BH9 BH10 BH11 BH12 BH13 1000 00 Sample Matrix Ground Water Ground Water			

Client: Pinchin Ltd

Project: 225335.007, Croft GW

Project Manager: Alana Valle

Samplers: Sarah Burke

MATRIX: WATER			:	Sample Number	7	8	9	10	11	12	13	14
				Sample Name	BH1	BH8	BH9	BH10	BH11	BH12	BH13	BH14
_1 = ODWS_AO_OG / WATER / Table 4 - Drinking Wate	er - Reg 0.169_03			Sample Matrix	Ground Water							
L2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking	Water - Reg 0.169_03			Sample Date	10/05/2023	10/05/2023	10/05/2023	10/05/2023	10/05/2023	10/05/2023	10/05/2023	10/05/2023
Parameter	Units	RL	L1	L2	Result							
Other (ORP)												
рН	No unit	0.05	8.5		7.04	6.77	7.43	7.84	7.48	7.55	7.10	7.61
Chloride	mg/L	1	250		6	2	41	410	42	5	4	67
Phenols												
4AAP-Phenolics	mg/L	0.002			0.002	< 0.002	< 0.002	0.002	0.004	< 0.002	< 0.002	< 0.002
MATRIX: WATER			:	Sample Number	15							
				Sample Name	GW DUP							
_1 = ODWS_AO_OG / WATER / Table 4 - Drinking Wate	er - Reg O.169_03			Sample Matrix	Ground Water							
L2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking	Water - Reg 0.169_03			Sample Date	10/05/2023							
Parameter	Units	RL	L1	L2	Result							
Acid Rock Drainage												
pH Check <2	pH	0.05			1.00							
General Chemistry												
Biochemical Oxygen Demand (BOD5)	mg/L	2			< 4↑							
Prep BOD	Prep	no			45058							
Total Suspended Solids	mg/L	2			953							
Alkalinity	mg/L as CaCO3	2	500		81							
Conductivity	uS/cm	2			391							
Total Dissolved Solids	mg/L	30	500		254							
Chemical Oxygen Demand	mg/L	8			< 8							
Turbidity	NTU	0.10	5	1	197							
Total Kjeldahl Nitrogen (N)	as N mg/L	0.05			0.20							

Client: Pinchin Ltd

Project: 225335.007, Croft GW

Project Manager: Alana Valle

Samplers: Sarah Burke

			-		15
IATRIX: WATER				Sample Number	15
				Sample Name	GW DUP
I = ODWS_AO_OG / WATER / Table 4 - Drinking Water -	Reg 0.169_03			Sample Matrix	
2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking Wa	ater - Reg 0.169_03			Sample Date	10/05/2023
Parameter	Units	RL	L1	L2	Result
eneral Chemistry (continued)					
Ammonia+Ammonium (N)	as N mg/L	0.04			0.07
Total Reactive Phosphorous (o-phosphate	mg/L	0.03			< 0.03
as P)					
Dissolved Organic Carbon	mg/L	1	5		3
letals and Inorganics					
Phosphorus (total)	mg/L	0.03			0.62
Sulphate	mg/L	2	500		26
Nitrite (as N)	as N mg/L	0.03		1	< 0.03
Nitrate (as N)	as N mg/L	0.06		10	< 0.06
Hardness (dissolved)	mg/L as CaCO3	0.05	100		156
Silver (dissolved)	mg/L	0.00005			< 0.00005
Aluminum (dissolved)	mg/L	0.001			0.026
Arsenic (dissolved)	mg/L	0.0002		0.01	0.0003
Barium (dissolved)	mg/L	0.00008		1	0.0711
Beryllium (dissolved)	mg/L	0.000007			0.000039
Bismuth (dissolved)	mg/L	0.00001			< 0.00001
Boron (dissolved)	mg/L	0.002		5	0.066
Calcium (dissolved)	mg/L	0.01			48.9
Cadmium (dissolved)	mg/L	0.000003		0.005	0.000010
Cobalt (dissolved)	mg/L	0.000004			0.000511
Chromium (dissolved)	mg/L	0.00008		0.05	0.00019
Copper (dissolved)	mg/L	0.0002	1		0.0003

Client: Pinchin Ltd

Project: 225335.007, Croft GW

Project Manager: Alana Valle

Samplers: Sarah Burke

				Sample Number	15
IATRIX: WATER					
				Sample Name	GW DUP
= ODWS_AO_OG / WATER / Table 4 - Drinking Water - Reg O.				Sample Matrix	Ground Water
e = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking Water - Re				Sample Date	10/05/2023
Parameter	Units	RL	L1	L2	Result
letals and Inorganics (continued)					
Iron (dissolved)	mg/L	0.007	0.3		3.41
Potassium (dissolved)	mg/L	0.009			2.75
Magnesium (dissolved)	mg/L	0.001			8.23
Manganese (dissolved)	mg/L	0.00001	0.05		0.938
Molybdenum (dissolved)	mg/L	0.00004			0.00025
Sodium (dissolved)	mg/L	0.01	200	20	9.24
Silicon (dissolved)	mg/L	0.02			9.44
Nickel (dissolved)	mg/L	0.0001			0.0002
Lead (dissolved)	mg/L	0.00009		0.01	< 0.00009
Antimony (dissolved)	mg/L	0.0009		0.006	< 0.0009
Selenium (dissolved)	mg/L	0.00004		0.05	0.00012
Tin (dissolved)	mg/L	0.00006			0.00010
Strontium (dissolved)	mg/L	0.00008			0.236
Thallium (dissolved)	mg/L	0.000005			< 0.000005
Titanium (dissolved)	mg/L	0.00005			0.00296
Uranium (dissolved)	mg/L	0.000002		0.02	0.000428
Vanadium (dissolved)	mg/L	0.00001			0.00035
Zinc (dissolved)	mg/L	0.002	5		< 0.002

600	SGS				FINAL REPORT	CA15146-MAY23 R
						Client: Pinchin Ltd
						Project: 225335.007, Croft GW
						Project Manager: Alana Valle
						Samplers: Sarah Burke
MATRIX: WATER				ample Number Sample Name	15 GW DUP	
L1 = ODWS_AO_OG / WATER / Table 4 - Drink	ing Water - Reg O.169_03			Sample Matrix	Ground Water	
L2 = ODWS_MAC / WATER / Table 1,2 and 3 -	Drinking Water - Reg O.169_03			Sample Date	10/05/2023	
Parameter	Units	RL	L1	L2	Result	
Other (ORP)						
pН	No unit	0.05	8.5		7.52	
Chloride	mg/L	1	250		64	
Phenols				I		
4AAP-Phenolics	mg/L	0.002			< 0.002	

EXCEEDANCE SUMMARY

					ODWS_AO_OG / WATER / Table 4 - Drinking Water - Reg O.169_03	ODWS_MAC / WATER / Table 1,2 and 3 - Drinking Water - Reg 0.169_03
Parameter		Method	Units	Result	L1	L2
BH1						
Turbidity		SM 2130	NTU	26	5	1
Iron (dissolved)		SM 3030/EPA 200.8	mg/L	7.99	0.3	
Manganese (dissolve	ed)	SM 3030/EPA 200.8	mg/L	1.59	0.05	
Dissolved Organic C	arbon	SM 5310	mg/L	20	5	
BH8						
Turbidity		SM 2130	NTU	150	5	1
BH9						
Turbidity		SM 2130	NTU	210	5	1
Hardness (dissolved))	SM 3030/EPA 200.7	mg/L as CaCO3	162	100	
Iron (dissolved)		SM 3030/EPA 200.8	mg/L	24.9	0.3	
Manganese (dissolve	ed)	SM 3030/EPA 200.8	mg/L	3.34	0.05	
Sodium (dissolved)		SM 3030/EPA 200.8	mg/L	25.0		20
Dissolved Organic C	arbon	SM 5310	mg/L	19	5	
BH10						
Turbidity		SM 2130	NTU	25	5	1
Total Dissolved Solid	ls	SM 2540C	mg/L	991	500	
Hardness (dissolved))	SM 3030/EPA 200.7	mg/L as CaCO3	504	100	
Manganese (dissolve	ed)	SM 3030/EPA 200.8	mg/L	2.36	0.05	
Sodium (dissolved)		SM 3030/EPA 200.8	mg/L	186		20
Dissolved Organic C	arbon	SM 5310	mg/L	17	5	
Chloride		US EPA 325.2	mg/L	410	250	
BH11						
Turbidity		SM 2130	NTU	40	5	1
Iron (dissolved)		SM 3030/EPA 200.8	mg/L	0.330	0.3	
Manganese (dissolve	ed)	SM 3030/EPA 200.8	mg/L	0.471	0.05	
Sodium (dissolved)		SM 3030/EPA 200.8	mg/L	33.3	_	20
Dissolved Organic C	arbon	SM 5310	mg/L	17	5	
BH12						
Turbidity		SM 2130	NTU	223	5	1
Iron (dissolved)		SM 3030/EPA 200.8	mg/L	0.609	0.3	
Manganese (dissolve	ed)	SM 3030/EPA 200.8	mg/L	0.281	0.05	
BH13						
		CM 2420				

Turbidity	SM 2130	NTU	110	5	1
Manganese (dissolved)	SM 3030/EPA 200.8	mg/L	0.0621	0.05	

EXCEEDANCE SUMMARY

				ODWS_AO_OG / WATER / Table 4	ODWS_MAC / WATER / Table
				- Drinking Water -	1,2 and 3 -
				Reg 0.169_03	Drinking Water -
					Reg O.169_03
Parameter	Method	Units	Result	L1	L2
14					
Turbidity	SM 2130	NTU	200	5	1
Hardness (dissolved)	SM 3030/EPA 200.7	mg/L as CaCO3	157	100	
Iron (dissolved)	SM 3030/EPA 200.8	mg/L	3.46	0.3	
Manganese (dissolved)	SM 3030/EPA 200.8	mg/L	0.953	0.05	
/ DUP					
Turbidity	SM 2130	NTU	197	5	1

Turbidity	SM 2130	NTU	197	5	
Hardness (dissolved)	SM 3030/EPA 200.7	mg/L as CaCO3	156	100	
Iron (dissolved)	SM 3030/EPA 200.8	mg/L	3.41	0.3	
Manganese (dissolved)	SM 3030/EPA 200.8	mg/L	0.938	0.05	

Alkalinity

Method: SM 2320 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LCS/Spike Blank			Matrix Spike / Ref.		ef.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recovery Limits (%)		Spike Recovery		very Limits (%)
						(70)	(%)	Low	High	(%)	Low	High
Alkalinity	EWL0344-MAY23	mg/L as CaCO3	2	< 2	0	20	100	80	120	NA		

Ammonia by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-007

Parameter	QC batch	Units	RL	Method	od Duplicate LCS/Spike Blank		LCS/Spike Blank			S/Spike Blank		м	Matrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery		ery Limits %)		
						(%)	Recovery (%)	Low	High	(%)	Low	High		
Ammonia+Ammonium (N)	SKA0158-MAY23	mg/L	0.04	<0.04	0	10	101	90	110	97	75	125		
Ammonia+Ammonium (N)	SKA0172-MAY23	mg/L	0.04	<0.04	ND	10	100	90	110	93	75	125		

Anions by discrete analyzer

Method: US EPA 325.2 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Duplicate		LCS/Spike Blank			м	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recovery Limits (%)		Spike Recovery		ery Limits %)
						(76)	(%)	Low	High	(%)	Low	High
Chloride	DIO5081-MAY23	mg/L	1	<1	7	20	108	80	120	112	75	125
Sulphate	DIO5081-MAY23	mg/L	2	<2	ND	20	106	80	120	109	75	125
Chloride	DIO5082-MAY23	mg/L	1	<1	5	20	109	80	120	111	75	125
Sulphate	DIO5082-MAY23	mg/L	2	<2	2	20	106	80	120	97	75	125

Anions by IC

Method: EPA300/MA300-lons1.3 | Internal ref.: ME-CA-[ENVIIC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover (%	-	Spike Recovery		ry Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Nitrite (as N)	DIO0375-MAY23	mg/L	0.03	<0.03	4	20	97	90	110	100	75	125
Nitrate (as N)	DIO0375-MAY23	mg/L	0.06	<0.06	1	20	99	90	110	102	75	125
Nitrite (as N)	DIO0399-MAY23	mg/L	0.03	<0.03	ND	20	99	90	110	103	75	125
Nitrate (as N)	DIO0399-MAY23	mg/L	0.06	<0.06	ND	20	103	90	110	105	75	125
Nitrite (as N)	DIO0422-MAY23	mg/L	0.03	<0.03	ND	20	97	90	110	103	75	125
Nitrate (as N)	DIO0422-MAY23	mg/L	0.06	<0.06	17	20	99	90	110	104	75	125
Nitrite (as N)	DIO0443-MAY23	mg/L	0.03	<0.03	ND	20	99	90	110	106	75	125

Biochemical Oxygen Demand

Method: SM 5210 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Re	əf.
	Reference	Blank	Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Biochemical Oxygen Demand (BOD5)	BOD0028-MAY23	mg/L	2	< 2	4	30	108	70	130	68	70	130

Carbon by SFA

Method: SM 5310 | Internal ref.: ME-CA-IENVISFA-LAK-AN-009

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	latrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recovel (۹	ry Limits %)	Spike Recovery	Recover	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Dissolved Organic Carbon	SKA0157-MAY23	mg/L	1	<1	3	20	107	90	110	105	75	125
Dissolved Organic Carbon	SKA0168-MAY23	mg/L	1	<1	ND	20	97	90	110	82	75	125

Chemical Oxygen Demand

Method: HACH 8000 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-009

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Ref	:
	Reference			(%) Rec	Spike	Recover (१	ry Limits 6)	Spike Recovery	Recove	ry Limits 6)		
						(%)	Recovery (%)	Low	High	(%)	Low	High
Chemical Oxygen Demand	EWL0338-MAY23	mg/L	8	<8	0	20	104	80	120	102	75	125
Chemical Oxygen Demand	EWL0367-MAY23	mg/L	8	<8	8	20	98	80	120	120	75	125
Chemical Oxygen Demand	EWL0397-MAY23	mg/L	8	<8	12	20	98	80	120	85	75	125

Conductivity

Method: SM 2510 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		N	latrix Spike / Ref	:
	Reference		Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	-	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Conductivity	EWL0344-MAY23	uS/cm	2	< 2	0	20	99	90	110	NA		

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	i.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits 6)	Spike Recovery		ry Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Silver (dissolved)	EMS0114-MAY23	mg/L	0.00005	<0.00005	ND	20	103	90	110	99	70	130
Aluminum (dissolved)	EMS0114-MAY23	mg/L	0.001	<0.001	2	20	103	90	110	120	70	130
Arsenic (dissolved)	EMS0114-MAY23	mg/L	0.0002	<0.0002	2	20	98	90	110	113	70	130
Barium (dissolved)	EMS0114-MAY23	mg/L	0.00008	<0.00008	0	20	95	90	110	112	70	130
Beryllium (dissolved)	EMS0114-MAY23	mg/L	0.000007	<0.000007	ND	20	96	90	110	106	70	130
Boron (dissolved)	EMS0114-MAY23	mg/L	0.002	<0.002	2	20	100	90	110	96	70	130
Bismuth (dissolved)	EMS0114-MAY23	mg/L	0.00001	<0.00001	ND	20	100	90	110	114	70	130
Calcium (dissolved)	EMS0114-MAY23	mg/L	0.01	<0.01	0	20	98	90	110	117	70	130
Cadmium (dissolved)	EMS0114-MAY23	mg/L	0.000003	<0.000003	15	20	102	90	110	110	70	130
Cobalt (dissolved)	EMS0114-MAY23	mg/L	0.000004	<0.000004	12	20	97	90	110	108	70	130
Chromium (dissolved)	EMS0114-MAY23	mg/L	0.00008	<0.00008	6	20	104	90	110	86	70	130
Copper (dissolved)	EMS0114-MAY23	mg/L	0.0002	<0.0002	10	20	100	90	110	113	70	130
Iron (dissolved)	EMS0114-MAY23	mg/L	0.007	<0.007	ND	20	100	90	110	NV	70	130
Potassium (dissolved)	EMS0114-MAY23	mg/L	0.009	<0.009	1	20	101	90	110	103	70	130
Magnesium (dissolved)	EMS0114-MAY23	mg/L	0.001	<0.001	0	20	101	90	110	93	70	130
Manganese (dissolved)	EMS0114-MAY23	mg/L	0.00001	<0.00001	14	20	99	90	110	109	70	130
Molybdenum (dissolved)	EMS0114-MAY23	mg/L	0.00004	<0.00004	8	20	99	90	110	107	70	130
Sodium (dissolved)	EMS0114-MAY23	mg/L	0.01	0.01	0	20	98	90	110	106	70	130
Nickel (dissolved)	EMS0114-MAY23	mg/L	0.0001	<0.0001	0	20	102	90	110	99	70	130
Lead (dissolved)	EMS0114-MAY23	mg/L	0.00009	<0.00009	ND	20	102	90	110	106	70	130

Metals in aqueous samples - ICP-MS (continued)

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-IENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LCS	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover (%	•	Spike Recovery		ery Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Antimony (dissolved)	EMS0114-MAY23	mg/L	0.0009	<0.0009	ND	20	104	90	110	130	70	130
Selenium (dissolved)	EMS0114-MAY23	mg/L	0.00004	<0.00004	12	20	97	90	110	110	70	130
Silicon (dissolved)	EMS0114-MAY23	mg/L	0.02	<0.02	0	20	96	90	110	NV	70	130
Tin (dissolved)	EMS0114-MAY23	mg/L	0.00006	<0.00006	10	20	103	90	110	NV	70	130
Strontium (dissolved)	EMS0114-MAY23	mg/L	0.00008	<0.00008	2	20	100	90	110	105	70	130
Titanium (dissolved)	EMS0114-MAY23	mg/L	0.00005	<0.00005	17	20	98	90	110	NV	70	130
Thallium (dissolved)	EMS0114-MAY23	mg/L	0.000005	<0.000005	ND	20	99	90	110	113	70	130
Uranium (dissolved)	EMS0114-MAY23	mg/L	0.000002	<0.000002	2	20	100	90	110	115	70	130
Vanadium (dissolved)	EMS0114-MAY23	mg/L	0.00001	<0.00001	6	20	99	90	110	105	70	130
Zinc (dissolved)	EMS0114-MAY23	mg/L	0.002	<0.002	0	20	101	90	110	97	70	130

pН

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Ref	•
	Reference		Blank		RPD	AC	Spike		ry Limits	Spike	Recover	-
						(%) Recovery		(%)	Recovery	(9	6)
							(%)	Low	High	(%)	Low	High
рН	EWL0344-MAY23	No unit	0.05	NA	0		100			NA		

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Re	ıf.
	Reference	Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ery Limits %)		
					(%)	Recovery (%)	Low	High	(%)	Low	High	
4AAP-Phenolics	SKA0155-MAY23	mg/L	0.002	<0.002	ND	10	101	80	120	98	75	125

Phosphorus by SFA

Method: SM 4500-P J | Internal ref.: ME-CA-IENVISFA-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	latrix Spike / Ref	I.
	Reference			Blank	RPD	AC	Spike	Recove (%	•	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Phosphorus (total)	SKA0159-MAY23	mg/L	0.03	<0.03	0	10	94	90	110	95	75	125
Phosphorus (total)	SKA0171-MAY23	mg/L	0.03	<0.03	ND	10	103	90	110	100	75	125

Reactive Phosphorus by SFA

Method: SM 4500-P F | Internal ref.: ME-CA-IENVISFA-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	latrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Reactive Phosphorous (o-phosphate as P)	SKA0170-MAY23	mg/L	0.03	<0.03	ND	10	98	90	110	77	75	125

Solids Analysis

Method: SM 2540C | Internal ref.: ME-CA-IENVIEWL-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Ref	E.
	Reference		Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recove	ry Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Dissolved Solids	EWL0413-MAY23	mg/L	30	<30	1	20	99	80	120	NA		

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-004

Parameter	QC batch			S/Spike Blank		Matrix Spike / Ref.						
	Reference			Blank	RPD	AC	Spike Recovery (%)	Recovery Limits (%)		Spike Recovery		ry Limits %)
						(%)		Low	High	(%)	Low	High
Total Suspended Solids	EWL0410-MAY23	mg/L	2	< 2	7	10	102	90	110	NA		
Total Suspended Solids	EWL0415-MAY23	mg/L	2	< 2	0	10	99	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-[ENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method Blank	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference				RPD	AC (%)	Spike Recovery	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
							(%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen (N)	SKA0156-MAY23	mg/L	0.05	<0.05	ND	10	105	90	110	121	75	125
Total Kjeldahl Nitrogen (N)	SKA0173-MAY23	mg/L	0.05	<0.05	2	10	101	90	110	108	75	125

Turbidity

Method: SM 2130 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-003

Parameter	QC batch Reference	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	Matrix Spike / Ref.		
				Blank	RPD	AC (%)	Spike	Recovery Limits (%)		Spike Recovery	Recover	-	
							Recovery (%)	Low	High	(%)	Low	High	
Turbidity	EWL0339-MAY23	NTU	0.10	< 0.10	0	10	99	90	110	NA			

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
 - ↑ Reporting limit raised.
 - ↓ Reporting limit lowered.
 - NA The sample was not analysed for this analyte
 - ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

			for Laborator						1.0				
J	uo	SGS Environmental Services - Lakefield: 185 Con											
25-54		SGS Environmental Services - London: 657 Conse	Laboratory Inf	2121 22 22 22		-4500 Toll Fr	ree: 877-848	8-8060 Fax	519-672-036	1 Web: ww	w.ca.sgs.com	1 {4}	
eceived	Date (mm/dd/y	MAY 1, 2 2023		th	LAB LIMS	#CA	1510	16-	may	23			
	Time (After Hou				Temperatu				52	3			
in the an	S. Carlo and Street		Billing & Reporting Information									en de la constante de la const La constante de la constante de	
Invoice/Keceipt to {3}:	Company	Alana Valle	Quote #	•		2023 544	+						
	Alterition	662 Falconbridge Rd, Unit 3	Attache	d Paramo	eter List:			YES	NO NO				
{3}: {3}:	Address	Sudbury, Ontario				Turnaround Time							
		P3A 4S4				Is *Rush	n Turnard	ound Tim	ne Require	d?	1	YES 🕅	
=	Email	avalle@pinchin.com				Specify:						_	
Project	Name/Number:	225335.007 Croft Landfill GW	P.O. #:			* Rush TA I	Requests Re	quire Lab A	pproval				
	A STATE	Client Informa	tion/Report To:	11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		Telle Intelle				Client L	ab #:		
Cor	npany Name:					Phone	Numbe	er:		705.50	7.9479		
					_								
Co	ontact Name:	-				Fax Nu	imber:		-				
	Address:					E-mail:	:						
	Copy to:												
			Sample	Information		St. Str.				1. 100	$z_{ij}^{-} = \eta_{ij} - z_{ij}$	19 24	
								A	nalysis F	Reques	ted		
						(plea	se ente					nd check o	
								ch analysis applies to each sample)					
		Sample Identifier	Date Sampled	Time	# of Bottles	1	Û						
			(mm/dd/yy)	Sampled		Field Filtered	Field Temp (°C)			age			
			/			Filte	Tem	H		Package			
		_	1			eld	eld	Field pH		GW P.			
					100	E	Ē	ιī	-				
H1			05/010/23	12-3	10	Y		-		X			
H8					10	Y				x	1-11		
H9					10	Y				x			
H10					10	4				x			
H11	1				10	V				x			
H12					10	V				x			
					10	1							
H13					10	Y				x			
H14	-				10	Y				x			
SW DU	Р		V	V	10	Y				x			
0.1													
						1							
			-			-			-	-			
			-				-			-			
_			-	1								1.1.1	
	14.4												
		(Name) Sarah Burke	(Signature),	1	h Bu	.11 -		Date:	05	11	23	(mm/dd/yy	
s	ampled By {1}:	(Name) Sarah Surke	(oignaturo),										

APPENDIX VI Groundwater Trend Analysis

APPENDIX VII Surface Water Trend Analysis

APPENDIX VIII Monitoring and Screening Checklist

Appendix D-Monitoring and Screening Checklist General Information and Instructions

General Information: The checklist is to be completed, and submitted with the Monitoring Report.

Instructions: A complete checklist consists of:

(a) a completed and signed checklist, including any additional pages of information which can be attached as needed to provide further details where indicated.

(b) completed contact information for the Competent Environmental Practitioner (CEP)

(c) self-declaration that CEP(s) meet(s) the qualifications as set out below and in Section 1.2 of the Technical Guidance Document.

Definition of Groundwater CEP:

For groundwater, the CEP must have expertise in hydrogeology and meet one of the following:

(a) the person holds a licence, limited licence or temporary licence under the Professional Engineers Act; or

(b) the person holds a certificate of registration under the *Professional Geoscientists Act, 2000* and is a practicing member, temporary, member or limited member of the Association of Professional Geoscientists of Ontario. O. Reg. 66/08, s. 2..

Definition of Surface water CEP:

A CEP for surface water assessments is a scientist, professional engineer or professional geoscientist as described in (a) and (b) above with demonstrated experience and post-secondary education, either a diploma or degree, in hydrology, aquatic ecology, limnology, aquatic biology, physical geography with specialization in surface water, and/or water resource management.

The type of scientific work that a CEP performs must be consistent with that person's education and experience. If an individual has appropriate training and credentials in both groundwater and surface water and is responsible for both areas of expertise, the CEP may then complete and validate both sections of the checklist.

Monitoring Report and Site Information			
Waste Disposal Site Name	Croft Waste Disposal Site		
Location (e.g. street address, lot, concession)	Lot 26, Concession 11, within the Municipality of Magnetawan, District of Parry Sound, Ontario		
GPS Location (taken within the property boundary at front gate/ front entry)	Universal Transverse Mercator (UTM) coordinates Zone 17U, 593659 meters (m) Easting and 5058398 m Northing (North American Datum 1983)		
Municipality	Magnetawan		
Client and/or Site Owner	The Corporation of the Municipality of Magnetawan		
Monitoring Period (Year)	2023		
This M	Ionitoring Report is being submitted under the following:		
Certificate of Approval No.:	A7034002		
Director's Order No.:	Type Here		
Provincial Officer's Order No.:	Type Here		
Other:	Type Here		

		-
Report Submission Frequency	AnnualOther	Specify (Type Here):
The site is:	C	Active Inactive Closed
If closed, specify C of A, control or aut	horizing document closure date:	Select Date
Has the nature of the operations at the site changed during this monitoring period?) Yes) No
If yes, provide details:	Type Here	
Have any measurements been taken since the last reporting period that indicate landfill gas volumes have exceeded the MOE limits for subsurface or adjacent buildings? (i. e. exceeded the LEL for methane)		● Yes ● No

Groundwater WDS Verification: Based on all available information about the site and site knowledge, it is my opinion that:			
Sa	ampling and Monitoring	g Program Status:	
1) The monitoring program continues to effectively characterize site conditions and any groundwater discharges from the site. All monitoring wells are confirmed to be in good condition and are secure:	 Yes No 	If no, list exceptions (Type Here):	
2) All groundwater, leachate and WDS gas sampling and monitoring for the monitoring period being reported on was successfully completed as required by Certificate(s) of Approval or other relevant authorizing/control document(s):	 Yes No Not Applicable 	If no, list exceptions below or attac	ch information.
Groundwater Sampling Location	Description/Explanation for change (change in name or location, additions, deletions)		Date
Type Here	ere Type Here		Select Date
Type Here	Type Here		Select Date
Type Here	Type Here		Select Date
Type Here	Type Here		Select Date

 a) Some or all groundwater, leachate and WDS gas sampling and monitoring requirements have been established or defined outside of a ministry C of A, authorizing, or control document. b) If yes, the sampling and monitoring identified under 3(a) for the monitoring period being reported on was successfully completed in accordance with established protocols, frequencies, locations, and parameters developed as per the Technical Guidance Document: 		○ Yes○ No● Not Applicable	
		 Yes No Not Applicable 	lf no, list exceptions below or attach additional information.
Groundwater Sampling Location	Description/Explanation for cha (change in name or location, add		Date
Type Here	Type Here		Select Date
Type Here	Type Here		Select Date
Type Here	Type Here		Select Date
Type Here	Type Here		Select Date
4) All field work for groundwater investigations was done in accordance with standard operating procedures as established/outlined per the Technical Guidance Document (including internal/external QA/ QC requirements) (Note: A SOP can be from a published source, developed internally by the site owner's consultant, or adopted by the consultant from another organization):	● Yes ○ No	lf no, specify (Type Here):	

	Sampling and Monitoring Program Results/WDS Conditions and Assessment:			
5)	The site has an adequate buffer, Contaminant Attenuation Zone (CAZ) and/or contingency plan in place. Design and operational measures, including the size and configuration of any CAZ, are adequate to prevent potential human health impacts and impairment of the environment.	● Yes ○ No	No formal CAZ registered for the s property boundary conditions cur criteria.	
6)	The site meets compliance and assessment criteria.	● Yes○ No	If no, list and explain exceptions (Гуре Here):
7)	The site continues to perform as anticipated. There have been no unusual trends/ changes in measured leachate and groundwater levels or concentrations.	● Yes ○ No	If no, list exceptions and explain re (Type Here):	eason for increase/change
1)	Is one or more of the following risk reduction practices in place at the site: (a) There is minimal reliance on natural attenuation of leachate due to the presence of an effective waste liner and active leachate collection/treatment; or (b) There is a predictive monitoring program in-place (modeled indicator concentrations projected over time for key locations); or (c) The site meets the following two conditions (typically achieved after 15 years or longer of site operation): <i>i</i> .The site has developed stable leachate mound(s) and stable leachate plume geometry/concentrations; and <i>ii</i> .Seasonal and annual water levels and water quality fluctuations are well understood.	 Yes No 	Note which practice(s):	☐ (a) ☐ (b) ⊠ (c)
9)	Have trigger values for contingency plans or site remedial actions been exceeded (where they exist):	 Yes No Not Applicable 	If yes, list value(s) that are/have be action taken (Type Here):	een exceeded and follow-up

Groundwater CEP Declaration:

I am a licensed professional Engineer or a registered professional geoscientist in Ontario with expertise in hydrogeology, as defined in Appendix D under Instructions. Where additional expertise was needed to evaluate the site monitoring data, I have relied on individuals who I believe to be experts in the relevant discipline, who have co-signed the compliance monitoring report or monitoring program status report, and who have provided evidence to me of their credentials.

I have examined the applicable Certificate of Approval and any other environmental authorizing or control documents that apply to the site. I have read and followed the Monitoring and Reporting for Waste Disposal Sites Groundwater and Surface Water Technical Guidance Document (MOE, 2010, or as amended), and associated monitoring and sampling guidance documents, as amended from time to time. I have reviewed all of the data collected for the above-referenced site for the monitoring period(s) identified in this checklist. Except as otherwise agreed with the ministry for certain parameters, all of the analytical work has been undertaken by a laboratory which is accredited for the parameters analysed to *ISO/IEC 17025:2005 (E)- General requirements for the competence of testing and calibration laboratories,* or as amended from time to time by the ministry.

If any exceptions or potential concerns have been noted in the questions in the checklist attached to this declaration, it is my opinion that these exceptions and concerns are minor in nature and will be rectified for the next monitoring/reporting period. Where this is not the case, the circumstances concerning the exception or potential concern and my client's proposed action have been documented in writing to the Ministry of the Environment District Manager in a letter from me dated:

27-Feb-2024			
Recommendations:			
Based on my technical review of the n	nonitoring results for the waste disposal site:		
○ No changes to the monitoring program are recommended	The casing lid on monitoring well BH-11 should be repaired and given a PVC cap.		
The following change(s) to the monitoring program is/are recommended:			
● No Changes to site design and operation are recommended	Type Here		
The following change(s) to the			

Name:	Tim McBride			
Seal:	Add Image			
Signature:	Tim McBride 2024.02.27 17:09:15 -05'00'	Date:	27-Feb-2024	
CEP Contact Information:	Tim McBride			
Company:	Pinchin Ltd.			
Address:	662 Falconbridge Road, Unit 3 Sudbury, ON P3A 4S4			
Telephone No.:	705.521.0560 Fax No.: 705.521.1309			
E-mail Address:	tmcbride@pinchin.com			
Co-signers for additional expertise provided:				
Signature:		Date:	Select Date	
Signature:	Date: Select Date			

Surface Water WDS Verification:			
Provide the name of surface water I waterbody (including the nearest sur			proximate distance to the
Name (s)	Name (s) Love Lake Unnamed tributary to Ahmic Lake		
Distance(s)	Distance(s) 500 m north of the Site South of the Site		
Based on all available information an	d site knowledge, it is my opinio	n that:	
Sa	ampling and Monitoring	g Program Status:	
 The current surface water monitoring program continues to effectively characterize the surface water conditions, and includes data that relates upstream/background and downstream receiving water conditions: 	● Yes ○ No	If no, identify issues (Type Here):	
2) All surface water sampling for the monitoring period being reported was successfully completed in accordance with the Certificate(s) of Approval or relevant authorizing/control document(s) (if applicable):	 Yes No Not applicable (No C of A, authorizing / control document applies) 	If no, specify below or provide det	ails in an attachment.
Surface Water Sampling Location		anation for change tion, additions, deletions)	Date
SW-1	Dry		Fall 2023
SW-3	Dry		Fall 2023
Type Here	Type Here		Select Date
Type Here	Type Here		Select Date

3) a) Some or all surface water sampling and monitoring program requirements for the monitoring period have been established outside of a ministry C of A or authorizing/control document.		○ Yes ○ No ④ Not Applicable	
b) If yes, all surface water samplin under 3 (a) was successfully comp established program from the site frequencies, locations and param Technical Guidance Document:	leted in accordance with the e, including sampling protocols,	 Yes No Not Applicable 	If no, specify below or provide details in an attachment.
Surface Water Sampling Location		anation for change ion, additions, deletions)	Date
Type Here	Type Here		Select Date
Type Here	Type Here		Select Date
Type Here	Type Here		Select Date
Type Here	Type Here		Select Date
4) All field work for surface water investigations was done in accordance with standard operating procedures, including internal/external QA/QC requirements, as established/ outlined as per the Technical Guidance Document, MOE 2010, or as amended. (Note: A SOP can be from a published source, developed internally by the site owner's consultant, or adopted by the consultant from another organization):	● Yes ○ No	lf no, specify (Type Here):	

Sampling and Monitoring Program Results/WDS Conditions and Assessment:

5)	The receiving water body meets surface water-related compliance criteria and assessment criteria:	
	i.e., there are no exceedances of criteria, based on MOE legislation, regulations, Water	∩ Yes
	Management Policies, Guidelines and Provincial Water Quality Objectives and other assessment	\mathbf{O}
	criteria (e.g., CWQGs, APVs), as noted in Table A or Table B in the Technical Guidance Document	🖲 No
	(Section 4.6):	

If no, list parameters that exceed criteria outlined above and the amount/percentage of the exceedance as per the table below or provide details in an attachment:

Parameter	Compliance or Assessment Criteria or Background	Amount by which Compliance or Assessment Criteria or Background Exceeded
e.g. Nickel	e.g. C of A limit, PWQO, background	e.g. X% above PWQO
See section 4.7	Type Here	Type Here
Type Here	Type Here	Type Here
Type Here	Type Here	Type Here
Type Here	Type Here	Type Here
6) In my opinion, any exceedances listed in Question 5 are the result of non-WDS related influences (such as background, road salting, sampling site conditions)?	● Yes ○ No	lf yes, specify (Type Here)

7)	All monitoring program surface water parameter concentrations fall within a stable or decreasing trend. The site is not characterized by historical ranges of concentrations above assessment and compliance criteria.	 ● Yes ○ No 	If no, list parameters and stations that is outside the expected range. Identify whether parameter concentrations show an increasing trend or are within a high historical range (Type Here)
8)	For the monitoring program parameters, does the water quality in the groundwater zones adjacent to surface water receivers exceed assessment or compliance criteria (e.g. , PWQOs, CWQGs, or toxicity values for aquatic biota (APVs)):	 Yes No Not Known Not Applicable 	If yes, provide details and whether remedial measures are necessary (Type Here)
9)	Have trigger values for contingency plans or site remedial actions been exceeded (where they exist):	 ○ Yes ○ No ● Not Applicable 	If yes, list value(s) that are/have been exceeded and follow-up action taken (Type Here)

Surface Water CEP Declaration:

I, the undersigned hereby declare that I am a Competent Environmental Practitioner as defined in Appendix D under Instructions, holding the necessary level of experience and education to design surface water monitoring and sampling programs, conduct appropriate surface water investigations and interpret the related data as it pertains to the site for this monitoring period.

I have examined the applicable Certificate of Approval and any other environmental authorizing or control documents that apply to the site. I have read and followed the Monitoring and Reporting for Waste Disposal Sites Groundwater and Surface Water Technical Guidance Document (MOE, 2010, or as amended) and associated monitoring and sampling guidance documents, as amended from time to time. I have reviewed all of the data collected for the above-referenced site for the monitoring period(s) identified in this checklist. Except as otherwise agreed with the ministry for certain parameters, all of the analytical work has been undertaken by a laboratory which is accredited for the parameters analysed to *ISO/IEC 17025:2005 (E)- General requirements for the competence of testing and calibration laboratories,* or as amended from time to time by the ministry.

If any exceptions or potential concerns have been noted in the questions in the checklist attached to this declaration, it is my opinion that these exceptions and concerns are minor in nature or will be rectified for future monitoring events. Where this is not the case, the circumstances concerning the exception or potential concern and my client's proposed action have been documented in writing to the Ministry of the Environment District Manager in a letter from me dated:

27-Feb-2024		
Recommendations: Based on my technical review of the monitoring results for the waste disposal site:		
The following change(s) to the () monitoring program is/are recommended:		
 No changes to the site design and operation are recommended 		
The following change(s) to the site O design and operation is/are recommended:	Type Here	

CEP Signature	$T_{\sim} \sim \mathcal{F}_{\sim}$ Tim McBrid 2024.02.27	e 17:10:10-05'00'
Relevant Discipline	Hydrogeologist	
Date:	27-Feb-2024	
CEP Contact Information:	Tim McBride	
Company:	Pinchin Ltd.	
Address:	662 Falconbridge Road, Unit 3 Sudbury, ON P3A 4S4	
Telephone No.:	705.521.0560	
Fax No. :	705.521.1309	
E-mail Address:	tmcbride@pinchin.com	
Save As		Print Form